REMEDIAL SITE ASSESSMENT DECISION - EPA REGION IV

EPA ID: GASFN0406949 Site Name: KOPPERS COURT RELEASE

Alias Site Names:

Page 1 of 1

State ID:

City: CONLEY	County of	or Parish: CLAYT	ON		State: GA		
Refer to Report Dated:	Report T	ype: SITE INSPE	ECTION 001	1			
Report Developed by: STATE					Section and the Manager Process		
DECISION:	· · · · · · · · · · · · · · · · · · ·	·			SITE:		
X 1. Further Remedial Site because:	e Assessment under C	ERCLA (Superfu	nd) is not re	equired	BREAK 1.9 OTHER: VOL 1		
1a. Site does not qua (No Further Remedia	alify for further remedi Il Action Planned - NFF	ial site assessme RAP)	nt under CE	RCLA			
1b. Site may qualify	for action, but is defer	red to:					
2. Further Assessment I	2. Further Assessment Needed Under CERCLA:						
2a. Priority: High	ner Lower						
2b. Other: (recomm	ended action) NFRAP	(No Futher Reme	dial Action P	lanned			
DISCUSSION/RATIONALE:		<u> </u>					
The U.S. Environmental Protection Agency referenced site, at this time. The basis for NFRAP designation means that no addition warranting further Superfund consideration decision regarding the tracking of NFRAF database as a historical record if no further	or the no further remedial action on all remedial steps under the on or conditions not previously sites, the referenced site may be Superfund interest is warrance.	on planned (NFRAP) do Federal Superfund pro Known to EPA regard by be removed from the Inted. Archived sites m	etermination is ogram will be ta ing the site are CERCLIS data	provided in thaken at the sit disclosed. In abase and pla	e attached document. A e unless new information accordance with EPA's ced in a separate archival		
information necessitating further Superfu	nd consideration is discovered	1.			i		
					:		
÷		1					
		į					
		į.		w jak	• • • • • • • • • • • • • • • • • • • •		
					ı		
		•					
				-	A STERN TON TERM ON TO REPORT AND THE STERN TH		
					10534515		

EPA Form #9100-3

Site Decision Made by: AMY WILLIAMS
Signature:

4/24/03 Date: 04/23/2003

To: Andy_Taft@dnr.state.ga.us cc: thompson.carolyn@epa.gov Subject: Koppers Court Release SI

Andy,

Attached are EPA comments on the SI Report for Koppers Court Release (a.k.a. Chrome Wheel Concepts) in Conley, Georgia. Sorry to get you these so late. If you want to call me, my phone number is (404) 562-8776.

- -Amy Williams
- -Site Assessment Manager

kopperscourt-si-review.wp-

EPA Review Comments -- Site Investigation report for Koppers Court Release (Conley, Georgia), prepared by Georgia EPD, September 19, 2002

Summary:

Downstream of the Koppers Court Release site, the tributary and South River are used for recreational fishing. The Surface Water Conclusions section of Georgia EPD's SI report states that the surface water pathway may be an area of concern for the SI. However, the presence of metals (arsenic, chromium, copper, and nickel) at over 3 times background in sediments in surface water used as a recreational fishery did not warrant a score higher than 28.5.

In the SI report EPD recommended that the Koppers Court Release site not be included on the NPL and that continued site evaluation under the HRS is not warranted at this time. For purposes of validating the site decision, EPA recommends that additional documentation be included in the report.

During the limited SI sampling in May 2002, EPD collected soil, sediment, and surface water samples. However, background samples were collected only in sediments, and not in surface water or soil. Background values for all media should have been included in the report to compare with surface water and soil data.

Comments:

- 1. Although limited surface water was available in the vicinity of the site during sampling, a background surface water sample should have been collected in an upgradient area off-site or a similar stream or watershed (with equivalent flow and sediment size/makeup). For purposes of the SI report, since no background surface water samples were collected during the field effort, EPA recommends that literature background values be reported in the report for comparison purposes.
- 2. In 2002, EPD collected only one soil sample in the area that once had stressed vegetation. The PA states that in 1999, after conducting a removal at the culvert on the Hickson property and soil from the backyard of the Chrome Wheel facility in the area of stressed vegetation, EPA's Removal Branch collected two confirmation samples that showed slightly elevated chromium levels of 120 mg/kg. It is unclear whether the area of soil sampled during the field effort was in the areas speculated to contain the highest levels of contamination.
- 3. The results of EPD's SI sampling in 2002 showed that the chromium level was only 8.6 mg/kg in the soil sample. Also detected were 16 mg/kg copper and 7.5 mg/kg nickel. EPD did not collect a background sample for soil and did not present any background concentrations in the report, although the statement was made that the concentrations of metals detected in soil were less than three times background (Section 5.4). This statement should not be made in the SI report unless it can be documented by presenting background data.

Received 04/23/03 Approved: 04/23/03

FINAL SITE INSPECTION NARRATIVE REPORT

Koppers Court Release 4041 Koppers Court Conley, DeKalb County, Georgia

CERCLIS ID # GASFN0406949

Prepared for
U.S. Environmental Protection Agency
Region IV

Prepared by: David Brownlee

Georgia Environmental Protection Division Hazardous Waste Management Branch

September 19, 2002

Revised April 15, 2003

Reviewed by: Jane Hendricks Unit Coordinator

TABLE OF CONTENTS

1.0	INTE	RODUCTION	3
2.0	CITE	E DESCRIPTION, OPERATIONAL HISTORY, & WASTE CHARACTERISTICS	3
2.0	2.1		
	2.1	LOCATIONSITE DESCRIPTION	
		OPERATIONAL HISTORY and WASTE CHARACTERISTICS	
	2.3		
	2.4	WASTE/SOURCE SAMPLING	
		2.4.1 Sample Locations	
		2.4.2 Analytical Results	
		2.4.3 Waste/Source Conclusions	/
3.0	GRO	UNDWATER PATHWAY	7
	3.1	HYDROGEOLOGIC SETTING	7
	3.2	GROUNDWATER TARGETS	7
	3.3	GROUNDWATER SAMPLE LOCATIONS	8
	3.4	GROUNDWATER ANALYTICAL RESULTS	8
	3.5	GROUNDWATER CONCLUSIONS	8
4.0	SUR	FACE WATER PATHWAYS	8
	4.1	HYDROLOGIC SETTING	8
	4.2	SURFACE WATER TARGETS	10
	4.3	SAMPLE LOCATIONS	10
	4.4	SURFACE WATER AND SEDIMENT ANALYTICAL RESULTS	10
	4.5	SURFACE WATER CONCLUSIONS	12
5.0	SOIL	AND AIR EXPOSURE PATHWAY	12
	5.1	PHYSICAL CONDITIONS	12
	5.2	SOIL AND AIR TARGETS	12
	5.3	SOIL SAMPLE LOCATIONS	12
	5.4	SOIL ANALYTICAL RESULTS	12
	5.5	SOIL AND AIR EXPOSURE CONCLUSIONS	13
6.0	SUM	MARY AND CONCLUSIONS	13
REFE	ERENCI	ES	14
		LIST OF FIGURES	
	~		_
1.		ERAL SITE MAP	
2.		LAYOUT WITH SAMPLING LOCATIONS	
3.	15-M	ILE DOWNSTREAM PATHWAY	9

LIST OF TABLES

1.	Waste Sample Description and Results	6
2.	Population Using Private and Public Drinking Water	8
3.	Protected Plants	10
4.	Surface Water and Sediment Sample Descriptions and Results	11
5.	Soil Sample Descriptions and Results	13
	LIST OF APPENDICES	
A1.	Photo Log for Chrome Wheel Concepts Site Investigation Sampling: May 16, 2002.	
A2.	Laboratory Analytical Results from Site Investigation Sampling, May 16, 2002.	
A3.	Superfund Chemical Data Matrix Printouts, June 1996 Edition.	
A4.	Site Sampling Plan and Health & Safety Plan	

1.0 INTRODUCTION

Under authority of the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) and the Superfund Amendments and Reauthorization Acts of 1986 (SARA), the Georgia Environmental Protection Division (EPD), Hazardous Waste Management Branch conducted a site inspection (SI) at the former Chrome Wheel Concepts site in DeKalb County, Georgia. The purpose of this investigation was to collect information concerning conditions at the former Chrome Wheel Concepts site sufficient to assess the threat posed to human health and the environment and to determine the need for additional investigation under CERCLA/SARA or other authority, and, if appropriate, support site evaluation using the Hazard Ranking System (HRS) for proposal to the National Priorities List (NPL). The scope of the investigation included review of previous information, sampling waste and environmental media to test preliminary assessment (PA) hypotheses and to evaluate and document HRS factors, and collecting additional non-sampling information.

2.0 SITE DESCRIPTION, OPERATIONAL HISTORY, & WASTE CHARACTERISTICS

2.1 Location

The former Chrome Wheel Concepts site is located at 4041 Koppers Court within the city limits of Conley, Georgia (Figure 1). The geographic coordinates are 33°39'45" N latitude and 84°19'25"W longitude as can be seen on the United States Geological Survey (U.S.G.S.) 7.5 minute Topographic Quadrangle Maps (Reference 1). Conley is located in DeKalb County and is approximately 2 miles east of Atlanta. The site can be reached from I-285 by taking the Moreland Avenue exit, proceeding north approximately 0.3 miles, turning right onto Henrico Road, approximately 1.4 miles turning right onto Koppers Road and then turning left onto Koppers Court approximately 0.3 miles down.

The climate of DeKalb County is mild to hot with humid summers and cool winters. The average daily temperature during the summer is about 78°F and the average daily temperature during the winter is about 44°F. Mean annual precipitation is approximately 50 inches (Reference 2).

2.2 Site Description

The site is located on approximately one acre. Access to the site is from Koppers Court. The site is bordered on the north by wooded areas and a drainage ditch, on the south by Iron Peddlers, an industrial facility, on the west by Interstate 675 and on the east by Koppers Court (References 3 and 4). The property slopes gently towards the north and the drainage ditch.

The property is currently in active use as an office and is no longer used for metal-plating operations. The site has one main structure.

2.3 Operational History and Waste Characteristics

Chrome Wheel Concepts was a manufacturing facility that performed decorative chrome plating on wheel accessories. The actual operations that took place at the facility are unknown; however, the general process of chrome plating is standard. The surface of the object to be plated must be prepared to accept the finish of the desired metal to be plated. Preparation of the surface involves alkaline cleaning solutions and sometimes organic solvents if grease is to be removed. Acid dipping generally follows the cleaning cycle. An undercoating is also applied prior the final or topcoat of chromium. The undercoats are usually a nickel or copper coating. For heavy undercoatings, parts are first struck in a cyanide bath. Chrome plating is the final finish in the process and is done using a chromic acid bath.

According to Mr. Terek Green, operator of the facility, Chrome Wheel Concepts ceased operations around the first quarter of 1999. However, on May 5, 1999 workers at a neighboring property noticed an unusual color in the water running through a culvert at the rear of the property located at 1579 Koppers Road. After discovering the suspected source for the discoloration, the workers contacted the Emergency Response Program (ERP) of the Georgia Environmental Protection Division. The suspected source was Chrome Wheel Concepts. The ERP contacted the USEPA Region 4 Emergency Response and Removal Branch for assistance in preventing the immediate threat of continuing migration of the contaminants to surface water bodies. The response activities included sampling and removal actions. Samples were taken from both inside and outside the building of the soil, sediment, and surface water. The contaminants of concern are antimony, arsenic, chromium, copper, lead, mercury, nickel, cyanide and the pH of the solutions (References 3 and 9).

2.4 WASTE/SOURCE SAMPLING

2.4.1 Sample Locations

Table 1 presents the sample numbers, locations and objectives for the waste sample collected during the SI. The waste, or source material, that was sampled at the site consisted of soil from the area where the release of plating solution occurred. The soil sample was taken using a stainless steel spoon in an area of sparse vegetation (see Figure 2). The soil sample result is also discussed in the soil pathway section. Other non-source samples include drainage area sediments and surface water. The non-source samples will be discussed under their respective pathways.

Table 1.	Waste Sample Description and Results

Sample Number	Description	Purpose of sample and constituents analyzed	Results - tota	ıls
Number			Contaminant	Level (mg/kg)
SOIL-1 HW9000	Soil sample near plating solution release area.	Investigate possibility of hazardous constituents. Analyzed for metals and cyanide. Non-detect results are reported as < the detection limit.	Antimony Arsenic Chromium Copper Lead Mercury Nickel Cyanide	<12 <8 8.6 16 <9 <0.1 7.5

SOIL-BG	Background metals data taken from literature (Reference 10)	To compare with site soil data.	Antimony Arsenic Chromium Copper Lead Mercury Nickel Cyanide	9.78 10.7 24.8 25.3 62.3 19.3
---------	--	---------------------------------	--	--

2.4.2 Analytical Results

Table 1 presents analytical results from the soil sample collected from the plating release area. The sample was collected at the surface in an area of sparse vegetation using a stainless steel spoon. None of the detected constituents exceeded 3 times the literature background levels (Reference 10).

2.4.3 Waste/Source Conclusions

There does not appear to be any source or residual soil contamination at the facility following the removal actions completed at the site.

3.0 GROUNDWATER PATHWAY

3.1 Hydrogeologic Setting

DeKalb County is in the central uplands district of the Piedmont physiographic province (Reference 5). The underlying geology of the area is made up of metamorphic and igneous rocks. Covering most of the area is saprolite, a clayey residual deposit produced by the weathering of the rocks. Depending on the properties of the parent rock and the topography, the saprolite in this area can range from 0 to 200 feet.

Groundwater in the area occupies joints, fractures and other secondary openings in the bedrock and pore spaces of the overlying soil. Precipitation recharges the groundwater found in these underground openings. Generally groundwater tends to flow the way of the surface topography of the area. This area slopes to the north toward the drainage ditch (References 1 and 4). Groundwater in this area is typically encountered between 10 and 600 feet below ground surface, and with very few exceptions, is under water table conditions. Yields for wells tend to be relatively small due to the low permeability of the crystalline rocks and overlying regolith, which limits the rate of recharge. For this reason, groundwater in this area is second to surface water for municipal supply.

3.2 Groundwater Targets

There are approximately 414 people within a four-mile radius of the site who rely on private wells for their drinking water. None of these people live within 1/2 mile of the site (Reference 6). The nearest resident on a private drinking water well is located between ½ mile and 1 mile from the site. The population served by city water is not included in the target population for groundwater because the City of Conley has a surface water withdrawal permit to take water from the Chattahoochee River (Reference 3).

Table 2 shows a population breakdown, by radial distance from the site, of private and public water users based on U.S. Census data (Reference 6). According to this information, no one within 1/2 mile, and only seven persons within 1 mile of the site, draw drinking water from a private well.

Table 2. Population Using Public and Private Drinking Water

Radial Distance in Miles	0 to .25	.25 to .5	.5 to 1	1 to 2	2 to 3	3 to 4	<u>Total</u>
Total Population	63	181	573	7664	21776	39483	69740
Private Well Users	0	0	7	29	69	309	414
Public Water Users	63	181	566	7635	21707	39483	69326

3.3 Groundwater Sample Locations

There were no groundwater samples collected during the SI.

3.4 Groundwater Analytical Results

There are no results to report for the SI.

3.5 Groundwater Conclusions

The release at the facility was a of short-term duration and was immediately followed by a clean-up of the contaminated soil and sediment. To be conservative, a suspected release to groundwater was used; however, the absence of any actual targets, and the low number of potential targets, makes the groundwater pathway an unlikely route of exposure.

4.0 SURFACE WATER PATHWAY

4.1 Hydrologic Setting

The former Chrome Wheel Concepts facility does not lie in a 100-year floodplain area (Reference 3).

The topography of the site is such that surface water primarily flows to the west where it drains into a concrete culvert directly behind the facility. The culvert flows south for approximately 100 yards, joins with another culvert flowing north, and turns under the I-675 expressway. The culvert emerges from under the expressway at the rear of an industrial facility and forms a small, unnamed tributary. The unnamed tributary flows north along the east side of Koppers Road. It crosses Bonsal Road and continues flowing northeast. It eventually flows underneath the I-285 exchange and discharges into the South River. There is no streamflow data for the unnamed tributary but it is very low and assumed to be a perennial surface water body with less than 10 cfs. The South River flows southeast past the fifteen mile mark for the Chrome Wheel Concepts site and combines with the Yellow River and the Alcovy River. There are designated wetlands throughout the surface water pathway (Reference 7). The probable point of entry (PPE) is shown on Figure 2 for better detail. The 15-mile surface water pathway is depicted in Figure 4.

State and US Highways
Interstate Highways
Rivers/Streams
Lake/Pond
Swamp/Marsh
15 Mile Downstream Pathway

Chrome Wheels Site 15 Mile Downstream Pathway 4041 Koppers Ct. Atlanta , Dekalb County

Scale: 1 inch = 1 mile 33 39' 45" 84 19' 25"

> Surface Water Intakes from EPD GSB DR96-27(1996); Roads, Rivers, Wetlands from Georgia DOT (1993);

4.2 Surface Water Targets

There are no drinking water intakes on the surface water pathway for a distance of 15 miles downstream of the site (Figure 4). Most residents in DeKalb and Henry County receive their drinking water from a system that has a surface water withdrawal permit at a location north of the former Chrome Wheel Concepts site. The unnamed tributary and South River downstream of the site are used for recreational fishing. There are over 100 wetlands within 15 miles downstream of the site. The nearest wetland is approximately 50 yards from the site (Reference 3). There are no federally or state designated endangered or threatened wildlife found along the surface water pathway. Table 3 describes the following endangered, threatened, rare or unusual plants that are known to exist in DeKalb and Henry County and whose habitat is consistent with that of the surface water pathway (Reference 8).

NAME NAME Allium speculae - Flatrock Onion Ribes curvatum - Granite Gooseberry Amorpha schwerinii - Schwerin Indigo Bush Schisandra glabra - Bay Starvine Amphianthus pusillus - Pool Sprite, Snorkelwort Sedum pusillum - Dwarf Granite Stonecrop Amsonia ludoviciana - Louisiana Blue Star Viburnum rafinesquianum - Downy Arrowwood Anemone berlandieri - Glade Windflower Waldsteinia lobata - Piedmont Barren Strawberry Melanthium woodii - Ozark Bunchflower Aster avitus - Alexander Rock Aster Aster georgianus - Georgia Aster Nestronia umbellula - Indian Olive Eriocaulon koernickianum - Pipewort Panax quinquefolius - American Ginseng Fimbristylis brevivaginata - Flatrock Fimbry Pilularia Americana - American Pillwort Isoetes melanospora - Black-spored Quillwort Pycanthemum curvipes - Mountain Mint

Table 3. Protected Plants

4.3 Sample Locations

Table 4 presents the sample numbers, locations, and objectives for samples collected to evaluate the surface water pathway during the SI. Four sediment samples were collected from the current drainage culvert and unnamed tributary along the surface water pathway including a background sediment sample upgradient of the drainage pathway (see Figure 2). Only one surface water sample was collected due to the absence of water flow during the SI sampling inspection. The surface water sample came from a standing pool along the surface water pathway (see Figure 2). Both a duplicate sediment and surface water sample were collected.

4.4 Surface Water and Sediment Analytical Results

The sediment samples from the drainage ditch behind Hickson Industries and the unnamed creek showed elevated levels of arsenic, chromium, copper, and nickel 3 times greater than background levels. SED-3 had the highest concentrations of all the metals, arsenic (57 mg/kg), chromium (110 mg/kg), copper (570 mg/kg), and nickel (230 mg/kg). The concentrations at SED-2 only had nickel at greater than 3 times above background; however, the duplicate sample was not 3 times above background for nickel. This suggests that the concentrations found at SED-3 and SED-4 may have contributions from the neighboring Hickson Industries facility. The Hickson Industries facility generates copper chromated arsenate (CCA) as part of its wood preserving operations. Similarly, the surface water sample detected arsenic, copper, and nickel as well. A background surface water sample was not collected, as a suitable location did not exist since the unnamed tributary is a headwater for the drainage area

Table 4. Surface Water and Sediment Sample Descriptions and Results

Sample	Description	Purpose	Results - totals (mg	/kg)
Number			Contaminants	Level
SED-1 HW8999	Background sediment sample from drainage culvert upgradient of the site.	Evaluate the sediment feeding into drainage culvert before the site.	Antimony Arsenic Chromium Copper Lead Mercury Nickel Cyanide	<12 <8 24 17 14 <0.1 20 <12
SED-2 HW9001 SED-2DUP HW9002	Sediment from directly behind the former Chrome Wheel Concepts facility. Duplicate sample taken from same location as SED-2.	Evaluate the sediment closest in distance from the release point. For QA/QC. Results shown in brackets next to SED-2 results.	Antimony Arsenic Chromium Copper Lead Mercury Nickel Cyanide	<12 [<12] <8 [<8] 56 [66] 38 [30] <9 [<9] <0.1 [<0.1] 69 [53] <11 [<10]
SED-3 HW9003	Sediment from across I-675 across the back of Hickson Industries	Evaluate the sediment further downstream from the facility and to see if any impacts are being contributed from Hickson Industries.	Antimony Arsenic Chromium Copper Lead Mercury Nickel Cyanide	<12 57 110 570 <9 <0.1 230 <12
SW-3 HW9004 SW-3DUP HW9005	Surface water sample from standing pool of water next to SED-3 sample location. Duplicate sample taken from the same location as SW-3.	Evaluate surface water impacts along the drainage pathway. Results are in ug/L For QA/QC. Results shown in brackets next to SW-3 results	Antimony Arsenic Chromium Copper Lead Mercury Nickel Cyanide	<60 [<60] 64 [62] <10 [<10] 110 [100] <3 [<3] <0.2 [<0.2] 68 [68] <25 [<25]
SED-4 HW9006	Sediment from the unnamed tributary along Koppers Road near the Hickson Industries	Evaluate sediment further downstream along the surface water pathway.	Antimony Arsenic Chromium Copper Lead Mercury Nickel Cyanide	<12 56 110 100 <9 <0.1 190 <11

4.5 Surface Water Conclusions

A comparison of background sediment sample concentrations to sediment sample results indicate elevated levels of arsenic, chromium, copper, and nickel 3 times above background occurring after the I-675 expressway but not immediately behind the former Chrome Wheel Concepts site. This could be attributable to residual contamination that occurred during the release from the site but was not removed during the cleanup. However, Hickson Industries, the facility that shares the drainage area after the I-675 expressway manufactures CCA as their main product and could also be the source for the elevated metals. Although background surface water reference values could not be found, the pathway was still deemed to have a release due to the sediment data; therefore, the surface water pathway is an area of concern for the SI.

5.0 SOIL AND AIR EXPOSURE PATHWAY

5.1 Physical Conditions

The former Chrome Wheel Concepts site is located in a rural/industrial area in Conley, Georgia. Land use surrounding the site includes undeveloped property and other industrial facilities. The facility is not currently operating as a metal-plating facility and has been leased to new tenants. Access to the site is unlimited and the property is mostly grassy except for a small paved parking lot and the building area (Reference 4).

5.2 Soil and Air Targets

During our site visit, we only encountered one worker who stayed inside the building. The nearest residence is greater than 200 feet from the site. The total population within a 4 mile radius of the site is 69,739. The population within 1/4 mile of the site is 63 (Reference 6). There exists the possibility of terrestrial sensitive environments for the endangered species listed on Table 2 that are found within the 4-mile radius of the site. There are numerous wetlands located within 4 miles of the site (Reference 7).

5.3 Soil Sample Locations

A single soil sample was collected from the area where the release occurred at the site (see Figure 2). The soil sample was collected in an area of sparse vegetation to determine if any residual surface contamination existed at the site following the remedial activities conducted by USEPA at the site. The sample was collected using a stainless steel spoon at the surface.

5.4 Soil Analytical Results

Table 5 summarizes the soil sample result for the SI. The results do not show elevated concentrations of any metals 3 times above literature background values near the release area.

Table 5. Soil Sample Analytical Results

Sample	Description	Purpose of sample and constituents analyzed	Results - totals			
Number			Contaminant	Level (mg/kg)		
SOIL-1 HW9000	Soil sample collected at the surface in the release area. This sample was also used as the waste sample in Table 1.	To determine if any residual contamination exists at the surface following the remedial efforts. Analyzed for metals.	Antimony Arsenic Chromium Copper Lead Mercury Nickel Cyanide	<12 <8 8.6 16 <9 <0.1 7.5		
SOIL-BG	Background metals data taken from literature (Reference 10)	To compare with site soil data.	Antimony Arsenic Chromium Copper Lead Mercury Nickel Cyanide	9.78 10.7 24.8 25.3 62.3 19.3		

5.5 Soil Exposure and Air Pathway Conclusions

The soil pathway does not appear to be a major pathway following the remedial efforts of USEPA in removing the contaminated soil from the release area. Sampling did not show any residual surface contamination at the site. Other signs of possible soil contamination, such as staining or dead vegetation, were not observed. In addition, the rural/industrial location of the site and absence of significant targets in the area further supports the limited significance of this pathway.

A release to the air is not suspected. During the SI sampling, no odors were noted at the facility no dust or fugitive emissions were observed.

6.0 SUMMARY AND CONCLUSIONS

The site is a closed chrome-plating facility that no longer generates hazardous waste or constituents. Therefore, there is no potential for further releases from the facility. A USEPA led cleanup of the contaminated sediments and soils occurred following the release. Follow-up sampling, conducted in accordance with this SI, indicate that the contaminated soil material has indeed been removed. Sediment sampling shows elevated levels of arsenic, chromium, copper, and nickel relative to background levels; however, this could also be attributable to the neighboring industrial facility that generates CCA as a product. Since the site is no longer in operation as a metal-plating facility, there is no reason to suspect that this site presents a current threat to any of the pathways.

In conclusion, based upon available information and current site conditions, the site is not recommended as a candidate for inclusion to the National Priorities List, nor is continued site evaluation under the Hazardous Ranking System warranted at this time.

County: DeKalb Picture 1 of 5 Site Name: Chrome Wheel Concepts

Date: May 16, 2002 Photographer: David Brownlee Program: Hazardous Sites Response Program (HSRP)

Explanation: Location of SED-1 sample. This was taken along the fence to be used as background.

County: DeKalb Picture 2 of 5 Site Name: Chrome Wheel Concepts

Date: May 16, 2002 Photographer: David Brownlee Program: Hazardous Sites Response Program (HSRP)

Explanation: Location of SOIL-1 taken behind the facility building. The sample was collected from the area with sparse vegetation.

County: DeKalb Picture 3 of 5 Site Name: Chrome Wheel Concepts

Date: May 16, 2002 Photographer: David Brownlee Program: Hazardous Sites Response Program (HSRP)

Explanation: Location of SED-2 sample. This was taken at the junction of the 2 drainage ditches behind the facility.

County: DeKalb Picture 4 of 5 Site Name: Chrome Wheel Concepts

Date: May 16, 2002 Photographer: David Brownlee Program: Hazardous Sites Response Program (HSRP)

Explanation: Location of SED-3 and SW-3 taken across I-675 along the back of Hickson Industries.

County: DeKalb Picture 5 of 5 Site Name: Chrome Wheel Concepts

Date: May 16, 2002 Photographer: David Brownlee Program: Hazardous Sites Response Program (HSRP)

Explanation: Location of SED-4 sample. This was taken across the street from Hickson Industries downgradient from SED-3.

Date: Photographer: Program:

Explanation:

HAZAHDOUS WASTE MANAGEMENT BRANCH (HWMB) REQUEST FOR LABORATORY ANALYSIS

Facility Name/Location:	CWC .		
Sample Collected By/Phone:	David Brown	alée 7-8690	_ GHL
Collection Date:	5/16/02	LAB N	o
Date Submitted To Lab:	8/17/02		
HWMB LOG NUMBER: File a separate Request Sheet for each and		01L-1 '	
Analysis Needed By: Routine	Other (sp	Sample ID AD662	
Sample Description (check one) Waste Ground Water	Soil/Sediment	Location: HWMB Description: CHRC Collector: D BRO Sample ID: AD66	
Concentration of Organics Requested (eath	mated): High Low	Other (e.s AD66	.13
Describe Sample Including Source and	d Known Properties (e.g. pH,	concentration);	
Applicable Hazardous Waste Codes (It Special Precautions: (Note: Totals will always be run first. A TCL 1. TOTAL ORGANICS Semi-Volatiles (Acid & Base/Neutral) Volatiles	ANALYSIS REC	f the total value indicates a positive TCU 2. TOTAL METALS ICP Metals Scan	MI Dh Sal
Pesticides Herbicides Organophosphorous Pestici PCB BETX	des	4 OZ. JARS Metals Special F 8 OZ. JARS 16 OZ. JARS	Requests:
Total Petroleum Hydrocarbo			
Organics Special Requests:			
TCLP ORGANICS Volatiles Semi-Volatiles (Acid & Base Additional Specific Organics)		Pestic Herbic	
4. TCLP METALS ANALYSIS			
TCLP Metals (Ag,As,Ba,Cd,C Mercury	Cr,NI,Pb.Se)	Additional Metals for TCL	
5. ADDITIONAL ANALYSIS REQUEST	TED (see list on back):	Cyanide	
Reviewed By: (HWMB): Approved By:(HWMB):	Oate:	Reviewed By (EPO Lab): Date (EPO Lab):	DALL 5-17-02

GEORGIA DEPARTMENT OF NATURAL RESOURCES ENVIRONMENTAL PROTECTION DIVISION

455 14th Street NW, Atlanta, GA 30318-7900 (404) 206-5269

LABORATORY REPORT

TO: Georgia E	nv Protection Divison	Date Collected:	5/16/2002	l
Hazardous	Waste Mgmt Branch	Time Collected:	14:40	l
	St SE Suite 1154E	Sample Collector:	D BROWNLEE	l
Atlanta, G	A 30334	Chlorination:		1
		Sample Type:		
		Received By:	GHL	1
Sample ID:	AD66213	Date Received:	5/17/2002	1
Facility Name:	Chrome Wheel Soil-1 Hw9000	Time Received:	11:13 AM	
Site ID:	HWMB	Project:	HW	1
Location ID:		Reporting Date:	6/12/2002	1
Location Descr:	HW9000	Received Temperature:	0.0 ° C	1

ANALYTE	PARAMETER CODE NOT	EPA TE METHOD	RESULT	QUALIF UNITS		NALY	ANALYSIS ST DATE	MCL or QC Range
QC Batch 49098								
Cyanide in Sediment	00721	9010B/901	2 Not Detected	ug/kg (dw)	9000	BS	5/22/2002	
Target analyte list for solids (QC Batch 49146							
s	01078	6010 B	Not Detected	ug/kg (dw)	1000	LA	5/30/2002	
Aluminum	01108	6010 B	8600000	ug/kg (dw)	20000	LA	5/30/2002	
Arsenic	01003	6010 B	Not Detected	ug/kg (dw)	8000	LA	5/30/2002	
Barium	01008	6010 B	35000	ug/kg (dw)	20000	LA	5/30/2002	
Beryllium	01013	6010 B	Not Detected	ug/kg (dw)	500	LA	5/30/2002	
Calcium	00917	6010 B	Not Detected	ug/kg (dw)	500000	LA	5/30/2002	
Cadmium	01028	6010 B	Not Detected	ug/kg (dw)	500	LA	5/30/2002	
Cobalt	01038	6010 B	Not Detected	ug/kg (dw)	5000	LA	5/30/2002	
Chromium	01029	6010 B	8600	ug/kg (dw)	1000	LA	5/30/2002	
Copper	01043	6010 B	16000	ug/kg (dw)	2500	LA	5/30/2002	
Iron	01170	6010 B	8700000	ug/kg (dw)	10000	LA	5/30/2002	
Potassium	00938	6010 B	2500000	ug/kg (dw)	500000	LA	5/30/2002	
Magnesium	00924	6010 B	2200000	ug/kg (dw)	500000	LA	5/30/2002	
Manganese	01053	6010 B	84000	ug/kg (dw)	1500	LA	5/30/2002	
Sodium	00934	6010 B	Not Detected	ug/kg (dw)	500000	LA	5/30/2002	
Nickel	01068	6010 B	7500	ug/kg (dw)	4000	LA	5/30/2002	
Lead	01052	6010 B	Not Detected	ug/kg (dw)	9000	LA	5/30/2002	
Antimony	01098	6010 B	Not Detected	ug/kg (dw)	12000	LA	5/30/2002	
Selenium	01148	6010 B	Not Detected	ug/kg (dw)	19000	LA	5/30/2002	
Thallium	34480	6010 B	Not Detected	ug/kg (dw)	20000	LA	5/30/2002	
Vanadium	01088	6010 B	16000	ug/kg (dw)	5000	LA	5/30/2002	
ug/L: micrograms/liter	<: less than			Laboratory Con	tacts:			<u></u>
mg/L: milligrams/liter mg/kg: milligrams/kilogram ug/kg: micrograms/kilogram ug/g: micrograms/gram u: parts per million : parts per billion org/L: organisms/liter	MCL: Maximum RL: Reporting Lii LSPC: result less USPC: result gre TIE: Tentatively VIOL: Violation (mit s than lower sp eater than uppe Identified or Es	ecification r specification timated	Inorganics: Metals: Organics: GC Mass Spe Microbiology:	Pat Samı Mark Toll Danny Rı c: Steve Br Viola Rey	bert eed yan	404-206-5239 404-206-5240 404-206-5252 404-206-5260 404-206-5210	

Sample ID: AD66213 Page 1

	PARAMETER	EPA		QUAI	JIFIER		ANALYSIS	MCL or
ANALYTE	CODE NO	TE METHOD	RESULT	UNITS	RL /	ANALYS	T DATE	QC Range
7	01093	6010 B	44000	ug/kg (dw)	2000	LA	5/30/2002	
Gesatch 49142 Mercury		EPA 7471	A Not Detected	ug/kg (dw)	100	РВ	5/22/2002	

ug/L: micrograms/liter mg/L: milligrams/liter mg/kg: milligrams/kilogram ug/kg: micrograms/kilogram ug/g: micrograms/gram

ug/g: micrograms/gram n: parts per million parts per billion org/L: organisms/liter <: less than

MCL: Maximum Contaminant Level

RL: Reporting Limit

LSPC: result less than lower specification USPC: result greater than upper specification TIE: Tentatively Identified or Estimated VIOL: Violation (result exceeds MCL)

Laboratory Contacts:

 Inorganics:
 Pat Sammons
 404-206-5239

 Metals:
 Mark Tolbert
 404-206-5240

 Organics:
 Danny Reed
 404-206-5252

 GC Mass Spec:
 Steve Bryan
 404-206-5260

 Microbiology:
 Viola Reynolds
 404-206-5210

F	REQUEST FOR LABOR	RATORY AN	ALYSIS	CW	C & (
Facility Name/Location:	Chrome, 1	wheel	Concepts (Koppers	Court)
Sample Collected By/Phone:			404-65	• •	
Collection Date:	5/16/02			3 No	
Date Submitted To Lab:	5/17/02				
•	8999	S <i>E</i>	 		
HWMB LOG NUMBER: File a separate Request Sheet for <u>each</u> same		26	<u> </u>		
Analysis Needed By: Routine _	X Other	(specify			
Sample Description (check one)			Sample ID AD662 Location: HWMB		
Weste	Soil/Sediment _ Surface Water _	<u>X</u> _	Description: CHRO Collector: D BRO	WNLEE	SED-1 HW8999
Concentration of Organics Requested (estim	sted): High Low	Other	Sample ID: AD662	215	
Describe Sample Including Source and	Known Properties (e.g. p	H, concentra	tion);		

Applicable Hazardous Waste Codes (If	known)				
Special Precautions:					
					
(Note: Totals will always be run first. A TCLF	ANALYSIS R		due indicates a positive T(CLP could results)
1. TOTAL ORGANICS			2 TOTAL METALS		
Semi-Volatiles (Acid & Base/Neutral)			ICP Metals Sc (Ag.As.Ba.Cd		<u> </u>
Volatiles Pesticides		_ 4 OZ.	JARSMercury		
Herbicides		•	JARS Metals Specia	······································	
Organophosphorous Pesticid PCB	# <i>L</i>	_ 16 02	Z. JARS		
BETX					
Total Petroleum Hydrocarbon					
Organics Special Requests:					
3. TCLP ORGANICS					
Volatiles Semi-Volatiles (Acid & Base/) Additional Specific Organics				ticides bicides	
4. TCLP METALS ANALYSIS					
TCLP Metals (Ag,As,Ba,Cd,Cr Mercury	,NLPb.Se)	·	Additional Metals for T	CLR:	
5. ADDITIONAL ANALYSIS REQUESTS	D (see list on back):	_Cyc	aide :	\$	
Reviewed By: (HWMB):Approved By:(HWMB):	Date:		Reviewed By (EPD Lab): Date (EPD Lab):	- WY	L
			· ·	J	- 1 1 - 0 d
		!			ì

HAZARDOUS WASTE MANAGEMENT BRANCH (HWMB)

GEORGIA DEPARTMENT OF NATURAL RESOURCES ENVIRONMENTAL PROTECTION DIVISION

455 14th Street NW, Atlanta, GA 30318-7900 (404) 206-5269

LABORATORY REPORT

Hazardous	v Protection Divison Waste Mgmt Branch St SE Suite 1154E	Date Collected: Time Collected: Sample Collector:	5/16/2002 14:30 D BROWNLEE	
, marita, art 6000 i		Chlorination:		
		Sample Type:		
		Received By:	GHL	
Sample ID:	AD66215	Date Received:	5/17/2002	
Facility Name:	Chrome Wheel Sed-1 Hw8999	Time Received:	11:13 AM	
Site ID:	HWMB	Project:	нw	
Location ID:		Reporting Date:	6/12/2002	
Location Descr:	HW8999	Received Temperature:	0.0 ° C	

	PARAMETER			QUALIF		•	NALYSIS	MCL or
ANALYTE	CODE N	OTE METHOD	RESULT	UNITS	RL	ANALYST	DATE	QC Range
QC Batch 49098								
Cyanide in Sediment	00721	9010B/901	2 Not Detected	ug/kg (dw)	12000	BS	5/22/2002	
Ta <u>rg</u> et analyte list for solids Q	C Batch 49146							
	01078	6010 B	Not Detected	ug/kg (dw)	1000	LA	5/30/2002	
Aluminum	01108	6010 B	12000000	ug/kg (dw)	200000	0 LA	5/30/2002	
Arsenic	01003	6010 B	Not Detected	ug/kg (dw)	8000	LA	5/30/2002	
Barium	01008	6010 B	66000	ug/kg (dw)	20000	LA	5/30/2002	
Beryllium	01013	6010 B	Not Detected	ug/kg (dw)	500	LA	5/30/2002	
Calcium	00917	6010 B	880000	ug/kg (dw)	500000	D LA	5/30/2002	
Cadmium	01028	6010 B	Not Detected	ug/kg (dw)	500	LA	5/30/2002	
Cobalt	01038	6010 B	24000	ug/kg (dw)	5000	LA	5/30/2002	
Chromium	01029	6010 B	24000	ug/kg (dw)	1000	LA	5/30/2002	
Copper	01043	6010 B	17000	ug/kg (dw)	2500	LA	5/30/2002	
ron	01170	6010 B	10000000	ug/kg (dw)	100000	0 LA	5/30/2002	
Potassium	00938	6010 B	Not Detected	ug/kg (dw)	500000) LA	5/30/2002	
fagnesium	00924	6010 B	1500000	ug/kg (dw)	500000) LA	5/30/2002	
Manganese	01053	6010 B	820000	ug/kg (dw)	1500	LA	5/30/2002	
Sodium	00934	6010 B	Not Detected	ug/kg (dw)	500000) LA	5/30/2002	
lickel	01068	6010 B	20000	ug/kg (dw)	4000	LA	5/30/2002	
.ead	01052	6010 B	14000	ug/kg (dw)	9000	LA	5/30/2002	
Antimony	01098	6010 B	Not Detected	ug/kg (dw)	12000	LA	5/30/2002	
Selenium	01148	6010 B	Not Detected	ug/kg (dw)	19000	LA	5/30/2002	
hallium	34480	6010 B	Not Detected	ug/kg (dw)	20000	LA	5/30/2002	
/anadium	01088	6010 B	24000	ug/kg (dw)	5000	LA	5/30/2002	
ug/L: micrograms/liter	<: less than			Laboratory Con	tacts:			
mg/L: milligrams/liter mg/kg: milligrams/kilogram ug/kg: micrograms/kilogram ug/g: micrograms/gram :: parts per million : parts per billion org/L: organisms/liter	RL: Reporting LSPC: result lo USPC: result of TIE: Tentative	m Contaminant Le Limit ess than lower spe greater than upper ly Identified or Est n (result exceeds	ecification r specification timated	Inorganics: Metals: Organics: GC Mass Spe Microbiology:	Pat Sai Mark To Danny c: Steve E	olbert 4 Reed 4 3ryan 4	104-206-5239 104-206-5240 104-206-5252 104-206-5260 104-206-5210	

Sample ID: AD66215 Page 1

	PARAMETE	ER EPA		QUAL	IFIER		ANALYSIS	MCL or
ANALYTE	CODE	NOTE METHOD	RESULT	UNITS	RL	ANALYS	T DATE	QC Range
Z	01093	6010 B	36000	ug/kg (dw)	2000	LA	5/30/2002	
Que Batch 49142								
Mercury		EPA 7471A	Not Detected	ug/kg (dw)	100	РВ	5/22/2002	

COMMENTS: TAL_S: \$ ICP Metals - Reporting limits raised due to elevated levels of target analytes in sample

ug/L: micrograms/liter mg/L: milligrams/liter mg/kg: milligrams/kilogram ug/kg: micrograms/kilogram un/g: micrograms/gram): parts per million

: parts per million : parts per billion org/L: organisms/liter <: less than

MCL: Maximum Contaminant Level

RL: Reporting Limit

LSPC: result less than lower specification USPC: result greater than upper specification TIE: Tentatively Identified or Estimated VIOL: Violation (result exceeds MCL) **Laboratory Contacts:**

Inorganics: Pat Sammons 404-206-5239
Metals: Mark Tolbert 404-206-5240
Organics: Danny Reed 404-206-5252
GC Mass Spec: Steve Bryan 404-206-5260
Microbiology: Viola Reynolds 404-206-5210

Sample ID: AD66215 Page 2

HAZARDOUS WASTE MANAGEMENT BRANCH (HWMB) REQUEST FOR LABORATORY ANALYSIS

Facility Name/Location:	CWC .	
Sample Collected By/Phone:	David Browslee	7-8690 97
Collection Date:	5/16/02	LAB No
Date Submitted To Lab:	5/16/02	
HWMB LOG NUMBER: File a separate Request Sheet for each same	9001 SED	-2 '
Analysis Needed By: Routine	Other (spec	
Sample Description (check one)		Sample ID AD66220
Waste Ground Water	Soil/Sediment Surface Water	Location: HWMB Description: CHROME WHEEL SED-2 HW9001 Collector: D BROWNLEE
Concentration of Organics Requested (estimates)	ned): High Low Ot	Sample ID: AD66220
(Note: Totals will always be run first. A TCLP 1. TOTAL ORGANICS Semi-Volatiles (Acid & Base/Neutral) Volatiles Pasticides Harbicides Organophosphorous Pesticide PCB		2. TOTAL METALS ICP Metals Scan OZ. JAPPSAS.Ba.Cd.Cr.,Ni,Pb.Se) Refeury OZ. JAPPSAS Special Requests: 6 OZ. JARS
BETX Total Petroleum Hydrocarbon		
•		
3. TCLP ORGANICS		
Volatiles Semi-Volatiles (Acid & Base/N Additional Specific Organics		Pesticides
4. TCLP METALS ANALYSIS		
TCLP Metals (Ag,As,Ba,Cd,Cr, Mercury	.Ni,Pb,Se)	Additional Metals for TCLR:
5. ADDITIONAL ANALYSIS REQUESTE	D (see list on back):	ganide
Reviewed By: (HWMB):	Date:	Reviewed By (EPO Lab): Date (EPO Lab):

GEORGIA DEPARTMENT OF NATURAL RESOURCES ENVIRONMENTAL PROTECTION DIVISION

455 14th Street NW, Atlanta, GA 30318-7900 (404) 206-5269

LABORATORY REPORT

Hazardous	nv Protection Divison Waste Mgmt Branch St SE Suite 1154E A 30334	Date Collected: Time Collected: Sample Collector: Chlorination: Sample Type:	5/16/2002 14:50 D BROWNLEE
Cample ID:	AD66220	Received By:	GHL
Sample ID:		Date Received:	5/17/2002
Facility Name:	Chrome Wheel Sed-2 Hw9001	Time Received:	11:13 AM
Site ID:	HWMB	Project:	HW
Location ID:		Reporting Date:	6/12/2002
Location Descr:	HW9001	Received Temperature	

ANALYTE	PARAMETER CODE NO	EPA TE METHOD	RESULT	QUALII UNITS		NALY	ANALYSIS ST DATE	MCL or QC Range
QC Batch 49098		-						
Cyanide in Sediment	00721	9010B/901	2 Not Detected	ug/kg (dw)	11000	BS	5/22/2002	
Target analyte list for solids (C Batch 49146							
s	01078	6010 B	Not Detected	ug/kg (dw)	1000	LA	5/30/2002	
Aluminum	01108	6010 B	15000000	ug/kg (dw)	200000	LA	5/30/2002	
Arsenic	01003	6010 B	Not Detected	ug/kg (dw)	8000	LA	5/30/2002	
Barium	01008	6010 B	39000	ug/kg (dw)	20000	LA	5/30/2002	
Beryllium	01013	6010 B	Not Detected	ug/kg (dw)	500	LA	5/30/2002	
Calcium	00917	6010 B	910000	ug/kg (dw)	500000	LA	5/30/2002	
Cadmium	01028	6010 B	Not Detected	ug/kg (dw)	500	LA	5/30/2002	
Cobalt	01038	6010 B	39000	ug/kg (dw)	5000	LA	5/30/2002	
Chromium	01029	6010 B	56000	ug/kg (dw)	1000	LA	5/30/2002	
Copper	01043	6010 B	38000	ug/kg (dw)	2500	LA	5/30/2002	
Iron	01170	6010 B	16000000	ug/kg (dw)	100000	LA	5/30/2002	
Potassium	00938	6010 B	Not Detected	ug/kg (dw)	500000	LA	5/30/2002	
Magnesium	00924	6010 B	2000000	ug/kg (dw)	500000	LA	5/30/2002	
Manganese	01053	6010 B	140000	ug/kg (dw)	1500	LA	5/30/2002	
Sodium	00934	6010 B	Not Detected	ug/kg (dw)	500000	LA	5/30/2002	
Nickel	01068	6010 B	69000	ug/kg (dw)	4000	LA	5/30/2002	
Lead	01052	6010 B	Not Detected	ug/kg (dw)	9000	LA	5/30/2002	
Antimony	01098	6010 B	Not Detected	ug/kg (dw)	12000	LA	5/30/2002	
Selenium	01148	6010 B	Not Detected	ug/kg (dw)	19000	LA	5/30/2002	
Thallium	34480	6010 B	Not Detected	ug/kg (dw)	20000	LA	5/30/2002	
Vanadium	01088	6010 B	38000	ug/kg (dw)	5000	LA	5/30/2002	
ug/L: micrograms/liter	<: less than			Laboratory Cor	ntacts:			 .
mg/L: milligrams/liter mg/kg: milligrams/kilogram ug/kg: micrograms/kilogram uq/g: micrograms/gram : parts per million parts per billion org/L: organisms/liter	MCL: Maximum RL: Reporting L LSPC: result les USPC: result gr TIE: Tentatively VIOL: Violation	imit is than lower spe eater than upper Identified or Est	ecification r specification timated	Inorganics: Metals: Organics: GC Mass Sp Microbiology:		bert eed yan	404-206-5239 404-206-5240 404-206-5252 404-206-5260 404-206-5210	

Sample ID: AD66220 Page 1

	PARAMETER	EPA		QUAL	JFIER		ANALYSIS	MCL or
ANALYTE	CODE NO	TE METHOD	RESULT	UNITS	RL /	ANALYS	T DATE	QC Range
Z	01093	6010 B	21000	ug/kg (dw)	2000	LA	5/30/2002	
Quesatch 49142								
Mercury		EPA 7471A	Not Detected	ug/kg (dw)	100	PB	5/22/2002	

COMMENTS: TAL_S: \$ ICP Metals - Reporting limits raised due to elevated levels of target analytes in sample

ug/L: micrograms/liter mg/L: milligrams/liter mg/kg: milligrams/kilogram ug/kg: micrograms/kilogram ug/g: micrograms/gram p: parts per million

parts per million parts per billion org/L: organisms/liter <: less than

MCL: Maximum Contaminant Level

RL: Reporting Limit

LSPC: result less than lower specification
USPC: result greater than upper specification
TIE: Tentatively Identified or Estimated
VIOL: Violation (result exceeds MCL)

Laboratory Contacts:

HAZARDOUS WASTE MANAGEMENT BRANCH (HWMB) REQUEST FOR LABORATORY ANALYSIS

Facility Name/Location:	CWC.		
Sample Collected By/Phone:	David Browner	7-8690	- Ch
Collection Date:	5/16/02	LAB No.	-
Date Submitted To Lab:	5/17/02		
HWMB LOG NUMBER: File a separate Request Sheet for each san		1-5 Dab,	
•	Other (spec	Sample ID AD66218	
Sample Description (check one) Waste Ground Water	Soë/Sediment X	Location: HWMB Description: CHROME WHEEL, SED-2 DUF Collector: D BROWNLEE	P HW90 0
Concentration of Organics Requested (estin	nated): High Low 0	Sample ID: AD66218	
Applicable Hazardous Waste Codes (Its Special Precautions:			-
1. TOTAL ORGANICS Semi-Volatiles (Acid & Base\Neutral) Volatiles Pasticides Herbicides Organophosphorous Pestici PCB BETX Total Petroleum Hydrocarbo		2. TOTAL METALS ICP Metals Scan (Ag.As.Ba.Cd.Cr,NLPb.Se) Mercury FOZ. JARSetals Special Requests: 3 OZ. JARS	
3. TCLP ORGANICS Volatiles Semi-Volatiles (Acid & Base Additional Specific Organics	Neutral)	Pesticides Herbicides	
4. TCLP METALS ANALYSIS	-		-
TCLP Metals (Ag,As,Ba,Cd,C Mercury	Cr,NL,Pb.Se)	Additional Metals for TCLR:	
5. ADDITIONAL ANALYSIS REQUES	TED (see list on back):	yanide	
Reviewed By: (HWMB):	Date:	Reviewed By (EPO Lab):	7-07
		RECPT TEMP O, D.	

GEORGIA DEPARTMENT OF NATURAL RESOURCES ENVIRONMENTAL PROTECTION DIVISION

455 14th Street NW, Atlanta, GA 30318-7900 (404) 206-5269

LABORATORY REPORT

Hazardous	v Protection Divison Waste Mgmt Branch St SE Suite 1154E 30334	Date Collected: Time Collected: Sample Collector: Chlorination: Sample Type:	5/16/2002 14:50 D BROWNLEE
Commis ID:	ADCOMA	Received By:	GHL
Sample ID:	AD66218	Date Received:	5/17/2002
Facility Name:	Chrome Wheel Sed-2 Dup Hw9002	Time Received:	11:13 AM
Site ID:	HWMB	Project:	HW
Location ID:		Reporting Date:	6/12/2002
Location Descr:	HW9002	Received Temperature:	0.0 ° C

	PARAMETER	EPA		QUALIFI	ER		ANALYSIS	MCL or
ANALYTE	CODE NOT	E METHOD	RESULT	UNITS		ANALYS	T DATE	QC Range
QC Batch 49098								
Cyanide in Sediment	00721	9010B/901	2 Not Detected	ug/kg (dw)	10000	BS	5/22/2002	
Target analyte list for solids Q	C Batch 49146							
s in the second	01078	6010 B	Not Detected	ug/kg (dw)	1000	LA	5/30/2002	
Aluminum	01108	6010 B	14000000	ug/kg (dw)	200000	LA	5/30/2002	
Arsenic	01003	6010 B	Not Detected	ug/kg (dw)	8000	LA	5/30/2002	
Barium	01008	6010 B	35000	ug/kg (dw)	20000	LA	5/30/2002	
Beryllium	01013	6010 B	Not Detected	ug/kg (dw)	500	LA	5/30/2002	
Calcium	00917	6010 B	930000	ug/kg (dw)	500000	LA	5/30/2002	
Cadmium	01028	6010 B	Not Detected	ug/kg (dw)	500	LA	5/30/2002	
Cobalt	01038	6010 B	19000	ug/kg (dw)	5000	LA	5/30/2002	
Chromium	01029	6010 B	66000	ug/kg (dw)	1000	LA	5/30/2002	
Copper	01043	6010 B	30000	ug/kg (dw)	2500	LA	5/30/2002	
Iron	01170	6010 B	14000000	ug/kg (dw)	100000	LA	5/30/2002	
Potassium	00938	6010 B	Not Detected	ug/kg (dw)	500000	LA	5/30/2002	
Magnesium	00924	6010 B	1900000	ug/kg (dw)	500000	LA	5/30/2002	
Manganese	01053	6010 B	110000	ug/kg (dw)	1500	LA	5/30/2002	
Sodium	00934	6010 B	Not Detected	ug/kg (dw)	500000	LA	5/30/2002	
Nickel	01068	6010 B	53000	ug/kg (dw)	4000	LA	5/30/2002	
Lead	01052	6010 B	Not Detected	ug/kg (dw)	9000	LA	5/30/2002	
Antimony	01098	6010 B	Not Detected	ug/kg (dw)	12000	LA	5/30/2002	
Selenium	01148	6010 B	Not Detected	ug/kg (dw)	19000	LA	5/30/2002	
Thallium	34480	6010 B	Not Detected	ug/kg (dw)	20000	LA	5/30/2002	
Vanadium	01088	6010 B	37000	ug/kg (dw)	5000	LA	5/30/2002	
ug/L: micrograms/liter	<: less than			Laboratory Cont	acts:			
mg/L: milligrams/liter mg/kg: milligrams/kilogram ug/kg: micrograms/kilogram ug/g: micrograms/gram :: parts per million : parts per billion org/L: organisms/liter	MCL: Maximum C RL: Reporting Lim LSPC: result less USPC: result grea TIE: Tentatively lo VIOL: Violation (re	nit than lower spo ater than upper dentified or Est	ecification r specification timated	Inorganics: Metals: Organics: GC Mass Spec Microbiology:	Pat Sam Mark To Danny F	lbert Reed ryan	404-206-5239 404-206-5240 404-206-5252 404-206-5260 404-206-5210	

Sample ID: AD66218 Page 1

	PARAMETER EPA		QUALIFIER		ANALYSIS		MCL or	
ANALYTE	CODE	NOTE METHOD	RESULT	UNITS	RL	ANALYS	T DATE	QC Range
Z Satch 49142	01093	6010 B	19000	ug/kg (dw)	2000	LA	5/30/2002	
Mercury		EPA 7471A	Not Detected	ug/kg (dw)	100	PB	5/22/2002	

COMMENTS: TAL_S: \$ ICP Metals - Reporting limits raised due to elevated levels of target analytes in sample

ug/L: micrograms/liter mg/L: milligrams/liter mg/kg: milligrams/kilogram ug/kg: micrograms/kilogram ug/g: micrograms/gram

: parts per million parts per billion org/L: organisms/liter

<: less than

MCL: Maximum Contaminant Level

RL: Reporting Limit LSPC: result less than lower specification USPC: result greater than upper specification TIE: Tentatively Identified or Estimated VIOL: Violation (result exceeds MCL)

Laboratory Contacts:

Inorganics: Pat Sammons 404-206-5239 Metals: Mark Tolbert 404-206-5240 Organics: Danny Reed 404-206-5252 GC Mass Spec: Steve Bryan 404-206-5260 Viola Reynolds 404-206-5210 Microbiology:

Page 2 Sample ID: AD66218

REQUEST FOR LABORATORY ANALYSIS

Facility Name/Location:	CWC .		GHL
Sample Collected By/Phone:	David Brown	وو	
Collection Date:	5/16/02	LAB No	
Date Submitted To Lab:	5/17/02		
HWMB LOG NUMBER: File a separate Request Sheet for each sain		<u>-7</u>	
Analysis Needed By: Routine _	Other (specil		
Sample Description (check one) Waste Ground Water	Soil/Sediment X	Sample ID AD66211 Location: HWMB Description: CHROME WHEEL Collector: D BROWNLEE	, SED- 3 HW9003
Concentration of Organics Requested (estin	•	Sample ID: AD66211 entration);	
Applicable Hazardous Waste Codes (If Special Precautions:	known)		
(Note: Totals will always be run first. A TCU 1. TOTAL ORGANICS Semi-Volatiles (Acid & Basel/Neutral) Volatiles Pesticides Herbicides Organophosphorous Pesticides PCB	40Z 80Z		X
BETX Total Petroleum Hydrocarbor Organics Special Requests:			
3. TCLP ORGANICS Volatiles Semi-Volatiles (Acid & Base/ Additional Specific Organics		Pesticides Herbicides	
4. TCLP METALS ANALYSIS			
TCLP Metals (Ag,As,Ba,Cd,C Mercury	r,NLPb.Se)	Additional Metals for TCLP:	
5. ADDITIONAL ANALYSIS REQUEST	ED (see list on back):	yanide	
Reviewed By: (HWMB):	Date: Data:	Reviewed By (EPO Lab): Date (EPD Lab): 5-1	1-02
		RECPT TEMP OU) 。

GEORGIA DEPARTMENT OF NATURAL RESOURCES ENVIRONMENTAL PROTECTION DIVISION

455 14th Street NW, Atlanta, GA 30318-7900 (404) 206-5269

LABORATORY REPORT

TO: Georgia Env Protection Divison Hazardous Waste Mgmt Branch 205 Butler St SE Suite 1154E Atlanta, GA 30334		Date Collected: Time Collected: Sample Collector: Chlorination: Sample Type:	5/16/2002 15:40 D BROWNLEE	
Sample ID:	AD66211	Received By:	GHL	
ł '		Date Received:	5/17/2002	
Facility Name:	Chrome Wheel Sed-3 Hw9003	Time Received:	11:13 AM	
Site ID:	HWMB	Project:	HW	
Location ID:		Reporting Date:	6/12/2002	
Location Descr:	HW9003	Received Temperature:	0.0 ° C	

ANALYTE	PARAMETER EPA CODE NOTE METHOD RESULT		RESULT	QUALIFIER Units RL Anal		NALY	ANALYSIS ST DATE	MCL or QC Range
			·		<u> </u>			
QC Batch 49098	00704	00400/004	0 N - 4 D - 4 4 4		40000		F (00)(0000	
Cyanide in Sediment	00721	90108/901	2 Not Detected	ug/kg (dw)	12000	BS	5/22/2002	
Target analyte list for solids Q	C Batch 49146							
S	01078	6010 B	Not Detected	ug/kg (dw)	1000	LA	5/30/2002	
Aluminum	01108	6010 B	23000000	ug/kg (dw)	200000	LA	5/30/2002	
Arsenic	01003	6010 B	57000	ug/kg (dw)	8000	LA	5/30/2002	
Barium	01008	6010 B	78000	ug/kg (dw)	20000	LA	5/30/2002	
Beryllium	01013	6010 B	Not Detected	ug/kg (dw)	500	LA	5/30/2002	
Calcium	00917	6010 B	2500000	ug/kg (dw)	500000	LA	5/30/2002	
Cadmium	01028	6010 B	Not Detected	ug/kg (dw)	500	LA	5/30/2002	
Cobalt	01038	6010 B	20000	ug/kg (dw)	5000	LA	5/30/2002	
Chromium	01029	6010 B	110000	ug/kg (dw)	1000	LA	5/30/2002	
Copper	01043	6010 B	570000	ug/kg (dw)	2500	LA	5/30/2002	
Iron	01170	6010 B	21000000	ug/kg (dw)	100000	LA	5/30/2002	
Potassium	00938	6010 B	620000	ug/kg (dw)	500000	LA	5/30/2002	
Magnesium	00924	6010 B	3800000	ug/kg (dw)	500000	LA	5/30/2002	
Manganese	01053	6010 B	380000	ug/kg (dw)	1500	LA	5/30/2002	
Sodium	00934	6010 B	Not Detected	ug/kg (dw)	500000	LA	5/30/2002	
Nickel	01068	6010 B	230000	ug/kg (dw)	4000	LA	5/30/2002	
Lead	01052	6010 B	Not Detected	ug/kg (dw)	9000	LA	5/30/2002	
Antimony	01098	6010 B	Not Detected	ug/kg (dw)	12000	LA	5/30/2002	
Selenium	01148	6010 B	Not Detected	ug/kg (dw)	19000	LA	5/30/2002	
Thallium	34480	6010 B	Not Detected	ug/kg (dw)	20000	LA	5/30/2002	
Vanadium	01088	6010 B	38000	ug/kg (dw)	5000	LA	5/30/2002	
ug/L: micrograms/liter	<: less than		Laboratory Contacts:					
mg/L: milligrams/liter mg/kg: milligrams/kilogram ug/kg: micrograms/kilogram ug/g: micrograms/gram n: parts per million o: parts per billion org/L: organisms/liter	MCL: Maximum Contaminant Level RL: Reporting Limit LSPC: result less than lower specification USPC: result greater than upper specification TIE: Tentatively Identified or Estimated VIOL: Violation (result exceeds MCL)		Inorganics: Pat Sammons Metals: Mark Tolbert Organics: Danny Reed GC Mass Spec: Steve Bryan Microbiology: Viola Reynolds		404-206-5239 404-206-5240 404-206-5252 404-206-5260 404-206-5210			

Sample ID: AD66211 Page 1

PARAMETER EPA			QUALIFIER		ANALYSIS		MCL or
CODE	NOTE METHOD	RESULT	UNITS	RL	ANALYS	T DATE	QC Range
01093	6010 B	92000	ug/kg (dw)	2000	LA	5/30/2002	
	FPA 7471A	Not Detected	ua/ka (dw)	100	PB	5/22/2002	
	CODE	O1093 6010 B	CODE NOTE METHOD RESULT	CODE NOTE METHOD RESULT UNITS 01093 6010 B 92000 ug/kg (dw)	CODE NOTE METHOD RESULT UNITS RL 01093 6010 B 92000 ug/kg (dw) 2000	CODE NOTE METHOD RESULT UNITS RL ANALYS 01093 6010 B 92000 ug/kg (dw) 2000 LA	CODE NOTE METHOD RESULT UNITS RL ANALYST DATE 01093 6010 B 92000 ug/kg (dw) 2000 LA 5/30/2002

COMMENTS: TAL_S: \$ ICP Metals - Reporting limits raised due to elevated levels of target analytes in sample

ug/L: micrograms/liter mg/L: milligrams/liter mg/kg: milligrams/kilogram ug/kg: micrograms/kilogram ug/g: micrograms/gram n: parts per million

n: parts per million b: parts per billion org/L: organisms/liter <: less than

MCL: Maximum Contaminant Level

RL: Reporting Limit

LSPC: result less than lower specification USPC: result greater than upper specification TIE: Tentatively Identified or Estimated VIOL: Violation (result exceeds MCL) **Laboratory Contacts:**

 Inorganics:
 Pat Sammons
 404-206-5239

 Metals:
 Mark Tolbert
 404-206-5240

 Organics:
 Danny Reed
 404-206-5252

 GC Mass Spec:
 Steve Bryan
 404-206-5260

 Microbiology:
 Viola Reynolds
 404-206-5210

MULMENT DUVILLE (HAMR) REQUEST FOR LABORATORY ANALYSIS CWC Facility Name/Location: Brownles Sample Collected By/Phone: LAB No. Collection Date: 5117102 Date Submitted To Lab: SW-3 9004 **HWMB LOG NUMBER:** File a separate Request Sheet for each sample point) Routine Other (specify) Analysis Needed By: Sample ID AD66200 Location, HWMB Sample Description (check one) Description: CHROME WHEEL/ SW-3 -HW-Soil/Sediment Waste Collector D. BROWNLEE Surface Water **Ground Water** Sample ID AD66200 Concentration of Organics Requested (estimated): High ___ Low _ Describe Sample Including Source and Known Properties (e.g. pH, concentration); Applicable Hazardous Waste Codes (If known) Special Precautions: **ANALYSIS REQUIRED** (Note: Totals will sharps be run first. A TCLP will subsequently be run only if the total value indicates a positive TCLP could results) 2 TOTAL METALS ICP Metals Scan Semi-Volatiles HALF GALLO (Agras Beick Crint Po.Se) (Acid & Base/Neutral) Volatiles NUTRIENTS MENUSPACE REQUESTS: **Pesticides Herbicides** FCOL BOTTLES Organophosphorous Pesticides PCB metal bottles BETX CESTTO SECULA Total Petroleum Hydrocarbon LVOC VIALS Organics Special Requests: ___SULFIDES/PHENOUS 3. TCLP ORGANICS OIL AND GREADS 1-11iler Pesticides Volatiles Semi-Volatiles (Acid & Base/Neutral) Additional Specific Organics for TCLP: 4. TCLP METALS ANALYSIS TCLP Metals (Ag,As,Ba,Cd,Cr,Ni,Pb,Se) Additional Metals for TCLP: Mercury 5. ADDITIONAL ANALYSIS REQUESTED (see list on back): Reviewed By (EPO Lab): Reviewed By: (HWMB): Date: Date (EPD Lab): Approved By:(HWMB): _ Oate:

GEORGIA DEPARTMENT OF NATURAL RESOURCES ENVIRONMENTAL PROTECTION DIVISION

455 14th Street NW, Atlanta, GA 30318-7900 (404) 206-5269

LABORATORY REPORT

	nv Protection Divison Waste Mgmt Branch	Date Collected: Time Collected:	5/16/2002 15:40
	St SE Suite 1154E	Sample Collector:	D. BROWNLEE
Atlanta, GA	4 30334	Chlorination:	
		Sample Type:	
0 1 10	ADOSSO	Received By:	TNB
Sample ID:	AD66200	Date Received:	5/17/2002
Facility Name:	Chrome Wheel/ Sw-3 -Hw90004	Time Received:	10:58 AM
Site ID:	HWMB	Project:	HW
Location ID:		Reporting Date:	6/12/2002
Location Descr:	HW90004	Received Temperature:	0.0 ° C

ANALYTE	PARAMETER CODE NO	EPA TE METHOD	RESULT	UN	QUALIFIE		ANALY	ANALYSIS ST DATE	MCL or QC Range
QC Batch 49097	00700	EDA 005 4				0.5	50	E (04 (0000	
Total Cyanide	00720	EPA 335.4	Not Detected	ug/L		25	BS	5/21/2002	
Target analyte list Metals\ICPN	IS QC Batch 4913	32							
Im 9	01012	6020	Not Detected	ug/L		5	PT	6/10/2002	
Vanadium 51	01087	6020	Not Detected	ug/L		50	PT	6/10/2002	
Chromium 52	01034	6020	Not Detected	ug/L		10	PT	6/10/2002	
Cobalt 59	01037	6020	Not Detected	ug/L		50	PT	6/10/2002	
Nickel 60	01067	6020	68	ug/L		40	PT	6/10/2002	
Copper 65	01042	6020	110	ug/L		25	PT	6/10/2002	
Zinc 68	01092	6020	64	ug/L		20	PT	6/10/2002	
Arsenic 75	01002	6020	64	ug/L		10	PT	6/10/2002	
Selenium 82	01147	6020	Not Detected	ug/L		5	PT	6/10/2002	
Silver 107	01077	6020	Not Detected	ug/L		10	PT	6/10/2002	
Cadmium 111	01027	6020	Not Detected	ug/L		5	PT	6/10/2002	
Antimony 121	01097	6020	Not Detected	ug/L		60	PT	6/10/2002	
Barium 137	01007	6020	Not Detected	ug/L		200	PT	6/10/2002	
Thallium 205	01059	6020	Not Detected	ug/L		10	PT	6/10/2002	
Lead 207	01051	6020	Not Detected	ug/L		3	PT	6/10/2002	
ICP TAL Metals in Water QC B	atch 49124			•					
Aluminum	01105	6010B	2700	ug/L		200	LA	5/30/2002	
Calcium	00916	6010B	13000	ug/L		5000	LA	5/30/2002	
Iron	01045	6010B	1400	ug/L		100	LA	5/30/2002	
Potassium	00937	6010B	Not Detected	ug/L		5000	LA	5/30/2002	
Magnesium	00927	6010B	Not Detected	ug/L		5000	LA	5/30/2002	
ug/L: micrograms/liter	<: less than	<u></u>		Labo	oratory Conta	icts:		 _	-
mg/L: milligrams/liter mg/kg: milligrams/kilogram ug/kg: micrograms/kilogram ug/g: micrograms/gram n: parts per million org/L: organisms/liter	MCL: Maximum RL: Reporting Li LSPC: result les USPC: result gra TIE: Tentatively VIOL: Violation	imit is than lower spe eater than uppe Identified or Esi	ecification r specification timated	;	Inorganics: Metals: Organics: GC Mass Spec: Microbiology:	Pat Sa Mark Danny Steve	ammons Tolbert y Reed Bryan Reynolds	404-206-5239 404-206-5240 404-206-5252 404-206-5260 404-206-5210	

	PARAMETER	EPA		QUA	LIFIER		ANALYSIS	MCL or
ANALYTE	CODE NOT	E METHOD	RESULT	UNITS	RL A	NALYS	T DATE	QC Range
Nese	01055	6010B	62	ug/L	15	LA	5/30/2002	
Souram	00929	6010B	5900	ug/L	5000	LA	5/30/2002	
QC Batch 49131								
Mercury	71900	EPA 7470A	Not Detected	ug/L	0.2	PB	5/21/2002	

COMMENTS: \$R_TAL_L: ICP Metals - Matrix Spike had two analytes, Aluminum (253% recovery, limits 70-130%), and Iron (136% recovery, limits 70-130%), with a percent recovery outside acceptable control limits due to high concentration of target analytes in sample. 2-053102-157

ug/L: micrograms/liter mg/L: milligrams/liter mg/kg: milligrams/kilogram ug/kg: micrograms/kilogram ug/g: micrograms/gram ug/g: parts per million ug/g: parts per billion

org/L: organisms/liter

<: less than

RL: Reporting Limit

LSPC: result less than lower specification USPC: result greater than upper specification TIE: Tentatively Identified or Estimated VIOL: Violation (result exceeds MCL)

MCL: Maximum Contaminant Level

Laboratory Contacts:

 Inorganics:
 Pat Sammons
 404-206-5239

 Metals:
 Mark Tolbert
 404-206-5240

 Organics:
 Danny Reed
 404-206-5252

 GC Mass Spec:
 Steve Bryan
 404-206-5260

 Microbiology:
 Viola Reynolds
 404-206-5210

Page 2

•			
scility Name/Location:	CMC.		
iample Collected By/Phone:	David Bran	ntec -	
Collection Date:	5/16/02	LAB No	
late Submitted To Lab:	5/17/02		_
IWMB LOG NUMBER:	9005 5	W-3 Dup'	
ille a separate Request Sheet for <u>each</u> samp		γ	
inalysis Needed By: Routine _	Other (spe	atte mitte tigli galei liki	
ample Description (check one)		Sample ID AD66201 Location: HWMB	
Weste	Soil/Sediment Surface Water	Description. CHROME WHEEL SW-3DU Collector: D BROWNLEE Sample ID: AD66201	JF -HW≎
Applicable Hazardous Waste Codes (If			-
Special Precautions:			
	ANALYSIS REQU P will subsequently be run only if t	MRED total value indicates a positive TCLP could results)	
lote: Totals will always be run first. A TCLF	P will subsequently be run only if t	the total value indicates a positive TCLP could results)	
iote: Totals will always be run first. A TCLF TOTAL ORGANICS Semi-Volatiles	P will subsequently be run only if t	HALF GALLOCH Being Stames	
note: Totals will always be run first. A TCLF TOTAL ORGANICS Semi-Volatiles (Acid & BaseNoutral)	P will subsequently be run only if the subsequently be run onl	HALF GALLOGY Boths TCLP could results) HALF GALLOGY Boths Transport VUTRIENTS (ASAS BACCI, NI, Po. Se)	
Note: Totals will always be run first. A TCLS . TOTAL ORGANICS Semi-Volatiles	P will subsequently be run only if the subsequently be run onl	HALF GALLOGY Boths TCLP could results) HALF GALLOGY Boths Transport VUTRIENTS (ASAS BACCI, NI, Po. Se)	
iote: Totals will always be run first. A TCLF , TOTAL ORGANICS Semi-Volatiles (Acid & Base\Noutral) Volatiles	P will subsequently be run only if the subsequently be run onl	HALF GALLOCK Betting Stant 10 - WUTRIENTS (AGAS Be COCK NI PO Se) FOOL BOTTLING Special Requests:	
iote: Totals will always be run first. A TCLF , TOTAL ORGANICS Semi-Volatiles (Acid & Base\Noutral) Volatiles Pesticides	P will subsequently be run only if the subsequently be run onl	HALF GALLOCH Bodis Stan (10 - WITTEN TO BE STAN (10 -	
Note: Totals will always be run first. A TCLF . TOTAL ORGANICS Semi-Volatiles (Acid & Base\Noutral) Volatiles Pesticides Herbicides Organophosphorous Pesticid PCB	P will subsequently be run only if the subsequently be run onl	HALF GALLOCK Bottle Stan (10 - WILL BOTTLES ALLOCK Bottle Stan (10 - WILL BOTTLES ALLOCK BOTTLES ALLOCK BOTTLES ALLOCK BOTTLES ALLOCK BOTTLES	
Note: Totals will always be run first. A TCLF . TOTAL ORGANICS Semi-Volatiles (Acid & Base\Noutral) Volatiles Pesticides Herbicides Organophosphorous Pesticid PCB BETX	P will subsequently be run only if the subsequently be run onl	HALF GALLOCK Bottle Stan (10 - WILL BOTTLES ALLOCK Bottle Stan (10 - WILL BOTTLES ALLOCK BOTTLES ALLOCK BOTTLES ALLOCK BOTTLES ALLOCK BOTTLES	
Note: Totals will always be run first. A TCLF . TOTAL ORGANICS Semi-Volatiles (Acid & Base\Noutral) Volatiles Pesticides Herbicides Organophosphorous Pesticid PCB	P will subsequently be run only if the subsequently be run onl	HALF GALLOCH Boding Stamp 10 = X WUTRIENTS (AAA BACCOCH Requests: FCOL BOTTLES METAL BOTTLES METAL BOTTLES MODER BOTTLES	
Note: Totals will always be run first. A TCLF . TOTAL ORGANICS Sami-Volatiles (Acid & Base/Noutral) Volatiles Pesticides Herbicides Organophosphorous Pesticid PCB BETX	res	HALF GALLOCK BACK STATE	
Note: Totals will always be run first. A TCLF Semi-Volatiles (Acid & Base/Noutral) Volatiles Pesticides Herbicides Organophosphorous Pesticid PCB BETX Total Petroleum Hydrocarbon Organics Special Requests:	desV	HALF GALLOCK Bods TEAT (1) - (ALLOCK Bods TEAT) (1) - (ALLOCK BOTTLES TEAT) (1) - (ALLOCK BOTTL	
Note: Totals will always be run first. A TCLF Semi-Volatiles (Acid & Base/Neutral) Volatiles Pesticides Herbicides Organophosphorous Pesticid PCB BETX Total Petroleum Hydrocarbon Organics Special Requests:	desV	HALF GALLOCK BACK STATE	
Note: Totals will always be run first. A TCLF TOTAL ORGANICS Semi-Volatiles (Acid & Base/Noutral) Volatiles Pesticides Pesticides Organophosphorous Pesticid PCB BETX Total Petroleum Hydrocarbon Organics Special Requests:	vill subsequently be run only if the subsequently be run only	HALF GALLOCK Bods TEAT (1) - (ALLOCK Bods TEAT) (1) - (ALLOCK BOTTLES TEAT) (1) - (ALLOCK BOTTL	
Note: Totals will always be run first. A TCLS Semi-Volatiles (Acid & Base/Neutral) Volatiles Pesticides Pesticides Organophosphorous Pesticid PCB BETX Total Petroleum Hydrocarbon Organics Special Requests: TCLP ORGANICS Volatiles Semi-Volatiles (Acid & Base/Additional Specific Organics	vill subsequently be run only if the subsequently be run only	HALF GALLOCK Bettle Start (1) - HALF GALLOCK Bettle Start (1) - NUTRIENTS (A 13 Back Start (1) - FCOL BOTTLES (1) Poise) FCOL BOTTLES METAL BOTTLES MIBER BOTTLES OC VIALS ULFIDES PHENOLS IL AND GREASE //:fec Amber Preservation Confirmed	
Note: Totals will always be run first. A TCLS Semi-Volatiles (Acid & Base/Neutral) Volatiles Pesticides Pesticides Organophosphorous Pesticid PCB BETX Total Petroleum Hydrocarbon Organics Special Requests: TCLP ORGANICS Volatiles Semi-Volatiles (Acid & Base/Additional Specific Organics	des	HALF GALLOCK BANG STATES WUTRIENTS (AAS BACGC, MIPO, Se) FCOL BOTTLES WETAL BO	
Semi-Volatiles (Acid & Base/Neutral) Volatiles Pesticides Herbicides Organophosphorous Pesticid PCB BETX Total Petroleum Hydrocarbon Organics Special Requests: TCLP ORGANICS Volatiles Semi-Volatiles (Acid & Base/F Additional Specific Organics TCLP METALS ANALYSIS TCLP Metals (Ag,As,Ba,Cd,Cd	Neutral) for TCLP:	HALF GALLOCK Bettle Start (1) - HALF GALLOCK Bettle Start (1) - NUTRIENTS (A 13 Back Start (1) - FCOL BOTTLES (1) Poise) FCOL BOTTLES METAL BOTTLES MIBER BOTTLES OC VIALS ULFIDES PHENOLS IL AND GREASE //:fec Amber Preservation Confirmed	- - - - - - - -

GEORGIA DEPARTMENT OF NATURAL RESOURCES ENVIRONMENTAL PROTECTION DIVISION

455 14th Street NW, Atlanta, GA 30318-7900 (404) 206-5269

LABORATORY REPORT

	nv Protection Divison Waste Mgmt Branch	Date Collected: Time Collected:	5/16/2002 15:40	
	St SE Suite 1154E	Sample Collector:	D. BROWNLEE	
Atlanta, G	A 30334	Chlorination:		1
		Sample Type:		
0 1 15	ADOCCOM	Received By:	TNB	l
Sample ID:	AD66201	Date Received:	5/17/2002	
Facility Name:	Chrome Wheel/ Sw-3dup -Hw90005	Time Received:	10:58 AM	1
Site ID:	HWMB	Project:	HW	ĺ
Location ID:		Reporting Date:	6/12/2002	
Location Descr:	HW90005	Received Temperature:	0.0 ° C	1

ANALYTE	PARAMETER CODE NOTE	EPA METHOD	RESULT	QUALIFI UNITS	ER RL	ANALY	ANALYSIS ST DATE	MCL or QC Range
QC Batch 49097		_	_					
Total Cyanide	00720	EPA 335.4	Not Detected	ug/L	25	BS	5/21/2002	
Target analyte list Metals\ICPN	IS QC Batch 49132							
B m 9	01012	6020	Not Detected	ug/L	5	PT	6/7/2002	
Vanadium 51	01087	6020	Not Detected	ug/L	50	PT	6/7/2002	
Chromium 52	01034	6020	Not Detected	ug/L	10	PT	6/7/2002	
Cobalt 59	01037	6020	Not Detected	ug/L	50	PT	6/7/2002	
Nickel 60	01067	6020	68	ug/L	40	PT	6/7/2002	
Copper 65	01042	6020	100	ug/L	25	PT	6/7/2002	
Zinc 68	01092	6020	67	ug/L	20	PT	6/7/2002	
Arsenic 75	01002	6020	62	ug/L	10	PT	6/7/2002	
Selenium 82	01147	6020	Not Detected	ug/L	5	PT	6/7/2002	
Silver 107	01077	6020	Not Detected	ug/L	10	PT	6/7/2002	
Cadmium 111	01027	6020	Not Detected	ug/L	5	PT	6/7/2002	
Antimony 121	01097	6020	Not Detected	ug/L	60	PT	6/7/2002	
Barium 137	01007	6020	Not Detected	ug/L	200	PT	6/7/2002	
Thallium 205	01059	6020	Not Detected	ug/L	10	PT	6/7/2002	
Lead 207	01051	6020	Not Detected	ug/L	3	PT	6/7/2002	
ICP TAL Metals in Water QC B	atch 49124							
Aluminum	01105	6010B	1800	ug/L	200	LA	5/30/2002	
Calcium	00916	6010B	13000	ug/L	5000	LA	5/30/2002	
Iron	01045	6010B	950	ug/L	100	LA	5/30/2002	
Potassium	00937	6010B	Not Detected	ug/L	5000	LA	5/30/2002	
Magnesium	00927	6010B	Not Detected	ug/L	5000	LA	5/30/2002	
ug/L: micrograms/liter	<: less than			Laboratory Cont	acts:		·	
mg/L: milligrams/liter mg/kg: milligrams/kilogram ug/kg: micrograms/kilogram ug/g: micrograms/gram n: parts per million org/L: organisms/liter	MCL: Maximum C RL: Reporting Lim LSPC: result less USPC: result grea TIE: Tentatively Id VIOL: Violation (re	it than lower spe ter than upper entified or Est	ecification r specification timated	Inorganics: Metals: Organics: GC Mass Spec Microbiology:	Mark Danny Steve	ammons Tolbert y Reed Bryan Reynolds	404-206-5239 404-206-5240 404-206-5252 404-206-5260 404-206-5210	·

Sample ID: AD66201 Page 1

	PARAMETER	EPA		QUA	LIFIER		ANALYSIS	MCL or
ANALYTE	CODE NOT	E METHOD	RESULT	UNITS	RL A	NALYS	T DATE	QC Range
Monese	01055	6010B	46	ug/L	15	LA	5/30/2002	
Sociam	00929	6010B	6000	ug/L	5000	LA	5/30/2002	
QC Batch 49131								
Mercury	71900	EPA 7470A	Not Detected	ug/L	0.2	PB	5/21/2002	

ug/L: micrograms/liter mg/L: milligrams/liter mg/kg: milligrams/kilogram ug/kg: micrograms/kilogram ug/g: micrograms/gram

n: parts per million org/L: organisms/liter <: less than

MCL: Maximum Contaminant Level

RL: Reporting Limit

LSPC: result less than lower specification USPC: result greater than upper specification TIE: Tentatively Identified or Estimated VIOL: Violation (result exceeds MCL) **Laboratory Contacts:**

 Inorganics:
 Pat Sammons
 404-206-5239

 Metals:
 Mark Tolbert
 404-206-5240

 Organics:
 Danny Reed
 404-206-5252

 GC Mass Spec:
 Steve Bryan
 404-206-5260

 Microbiology:
 Viola Reynolds
 404-206-5210

Sample ID: AD66201 Page 2

HAZARDOUS WASTE MANAGEMENT BRANCH (HWMB) REQUEST FOR LABORATORY ANALYSIS

Facility Name/Location:	CWC .	
Sample Collected By/Phone:	David Brownle	Gr.
Collection Date:	5/16/02	LAB No.
Date Submitted To Lab:	5/17/02	
HWMB LOG NUMBER:	9006 SED	-4 '
File a separate Request Sheet for <u>each</u> sa	mple point)	
Analysis Needed By: Routine	Other (specify)	Sample ID AD66208
Sample Description (check one)	V	Location: HWMB Description: CHROME WHEEL SED-4 HW9
Waste Ground Water	Soil/Sediment X	Collector: D BROWNLEE Sample ID: AD66208
Concentration of Organics Requested (est	imated): High Low Other (c	Sample ID. AD00200
Describe Sample Including Source ar	nd Known Properties (e.g. pH, concents	ration);

Applicable Hazardous Waste Codes (If known)	
Special Precautions:		
	ф.:Ж().	and some covering of the souling
		Alth
(Note: Totals will always be run first. A TC	ANALYSIS REQUIRED LP will subsequently be run only if the popul	Table (Altron 1880) C. A. A. T. C. C. Course (Autoria)
1. TOTAL ORGANICS	NUT	
Semi-Volatiles		ICP Metals Scare
(Acid & Base\Neutral)	7,000	LEOTTI (F.S. e. Cd. Cr. NLPb. Se)
Volatiles Pesticides		AL BOT Media Special Requests:
Herbicides	ANS	ERECTILES
Organophosphorous Pestic	dala a	
РСВ	YU	VIALS
BETX	80 F	IDES/PHENOLS
Total Petroleum Hydrocarb	on	ALD COOK AND CO
		ND GREASE
Organics Special Requests		ter Amber,
3. TCLP ORGANICS		PlasHC
J. TOEF CHARMICS	Procer	vation Confirmed
Volatiles		Dasticidas
Semi-Volatiles (Acid & Base	e/Neutral)	By pH - Herbicides
Additional Specific Organic	s for TCLP:	• • A
4. TCLP METALS ANALYSIS		~~
TCLP Metals (Ag,As,Ba,Cd, Mercury	Cr.Ni,Pb.Se}	Additional Metals for TCLP:
5. ADDITIONAL ANALYSIS REQUES	TED (see list on back):	omide !
Reviewed By: (HWMB):	Date:	Reviewed By (EPO Lab):
Approved By:(HWMB):		Date (EPO Lab): 5-17-0 2
4	07 1400	(/51)
	OZ. JARS	RECPT TEMP
<u> </u>	OZ. JARS	
4		
i	6 OZ. JARS	

GEORGIA DEPARTMENT OF NATURAL RESOURCES ENVIRONMENTAL PROTECTION DIVISION

455 14th Street NW, Atlanta, GA 30318-7900 (404) 206-5269

LABORATORY REPORT

Hazardous	nv Protection Divison Waste Mgmt Branch St SE Suite 1154E A 30334	Date Collected: Time Collected: Sample Collector: Chlorination: Sample Type:	5/16/2002 16:00 D BROWNLEE
Carrata ID:	ADGGGG	Received By:	GHL
Sample ID:	AD66208	Date Received:	5/17/2002
Facility Name:	Chrome Wheel Sed-4 Hw9006	Time Received:	11:13 AM
Site ID:	HWMB	Project:	HW
Location ID:		Reporting Date:	6/12/2002
Location Descr:	HW9006	Received Temperature:	0.0 <i>° C</i>

ANALYTE	PARAMETER CODE NO	EPA OTE METHOD	RESULT	QUALIF UNITS	IER RL <i>A</i>	NALY	ANALYSIS ST DATE	MCL or QC Range
QC Batch 49098 Cyanide in Sediment	00721	90108/901	2 Not Detected	ug/kg (dw)	11000	BS	5/22/2002	
•		90106/901	2 NOI Delected	ug/kg (uw)	11000	ВЗ	3/22/2002	
Target analyte list for solids (
S	01078	6010 B	Not Detected	ug/kg (dw)	1000	LA	5/30/2002	
Alumínum	01108	6010 B	22000000	ug/kg (dw)	200000	LA	5/30/2002	
Arsenic	01003	6010 B	56000	ug/kg (dw)	8000	LA	5/30/2002	
Barium	01008	6010 B	51000	ug/kg (dw)	20000	LA	5/30/2002	
Beryllium	01013	6010 B	Not Detected	ug/kg (dw)	500	LA	5/30/2002	
Calcium	00917	6010 B	4300000	ug/kg (dw)	500000	LA	5/30/2002	
Cadmium	01028	6010 B	Not Detected	ug/kg (dw)	500	LA	5/30/2002	
Cobalt	01038	6010 B	21000	ug/kg (dw)	5000	LA	5/30/2002	
Chromium	01029	6010 B	110000	ug/kg (dw)	1000	LA	5/30/2002	
Copper	01043	6010 B	100000	ug/kg (dw)	2500	LA	5/30/2002	
Iron	01170	6010 B	16000000	ug/kg (dw)	100000	LA	5/30/2002	
Potassium	00938	6010 B	Not Detected	ug/kg (dw)	500000	LA	5/30/2002	
Magnesium	00924	6010 B	8800000	ug/kg (dw)	500000	LA	5/30/2002	
Manganese	01053	6010 B	330000	ug/kg (dw)	1500	LA	5/30/2002	
Sodium	00934	6010 B	Not Detected	ug/kg (dw)	500000	LA	5/30/2002	
Nickel	01068	6010 B	190000	ug/kg (dw)	4000	LA	5/30/2002	
Lead	01052	6010 B	Not Detected	ug/kg (dw)	9000	LA	5/30/2002	
Antimony	01098	6010 B	Not Detected	ug/kg (dw)	12000	LA	5/30/2002	
Selenium	01148	6010 B	Not Detected	ug/kg (dw)	19000	LA	5/30/2002	
Thallium	34480	6010 B	Not Detected	ug/kg (dw)	20000	LA	5/30/2002	
Vanadium	01088	6010 B	21000	ug/kg (dw)	5000	LA	5/30/2002	
ug/L: micrograms/liter	<: less than		 	Laboratory Cont	acts:			
mg/L: milligrams/liter mg/kg: milligrams/kilogram ug/kg: micrograms/kilogram ug/g: micrograms/gram n: parts per million : parts per billion org/L: organisms/liter	RL: Reporting LSPC: result le USPC: result ç TIE: Tentativel	m Contaminant Le Limit ess than lower spa greater than upper by Identified or Est n (result exceeds	ecification r specification imated	Inorganics: Metals: Organics: GC Mass Spe Microbiology:	Pat Sam Mark Tol Danny R c: Steve Br Viola Re	lbert leed yan	404-206-5239 404-206-5240 404-206-5252 404-206-5260 404-206-5210	

Sample ID: AD66208 Page 1

	PARAMET	ER EPA		QUAI	LIFIER		ANALYSIS	MCL or
ANALYTE	CODE	NOTE METHOD	RESULT	UNITS	RL	ANALYS	T DATE	QC Range
Z	01093	6010 B	63000	ug/kg (dw)	2000	LA	5/30/2002	
Qu-satch 49142								
Mercury		EPA 7471A	Not Detected	ug/kg (dw)	100	PB	5/22/2002	
COMMENTS: \$R TAL	S: ICP Metals - Matrix S	nike had eight analyte	s Aluminum (1	11000% recovery li	mits 70-130%	6) Calcium	(134% recove	nv

S: \$R_TAL_S: ICP Metals - Matrix Spike had eight analytes, Aluminum (11000% recovery, limits 70-130%), Calcium (134% recovery, limits 70-130%), Chromium (164% recovery, limits 70-130%), Copper (154% recovery, limits 70-130%), Iron (5000% recovery, limits 70-130%), Magnesium (168% recovery, limits 70-130%), Manganese (162% recovery, limits 70-130%), and Nickel (174% recovery, limits 70-130%), with a percent recovery outside acceptable control limits due to high concentration of target analytes in sample. Matrix spike had one analyte, Antimony (42.6% recovery, limits 70-130%) with percent recovery outside acceptable control limits due to matrix interference. 2-053102-158

COMMENTS: TAL_S: \$ ICP Metals - Reporting limits raised due to elevated levels of target analytes in sample

ug/L: micrograms/liter mg/L: milligrams/liter mg/kg: milligrams/kilogram ug/kg: micrograms/kilogram ug/g: micrograms/gram

n: parts per million b: parts per billion org/L: organisms/liter <: less than

MCL: Maximum Contaminant Level

RL: Reporting Limit

LSPC: result less than lower specification USPC: result greater than upper specification TIE: Tentatively Identified or Estimated VIOL: Violation (result exceeds MCL) **Laboratory Contacts:**

 Inorganics:
 Pat Sammons
 404-206-5239

 Metals:
 Mark Tolbert
 404-206-5240

 Organics:
 Danny Reed
 404-206-5252

 GC Mass Spec:
 Steve Bryan
 404-206-5260

 Microbiology:
 Viola Reynolds
 404-206-5210

HAZARDOUS WASTE MANAGEMENT BRANCH (HWMB) REQUEST FOR LABORATORY ANALYSIS

Sample Collected By/Phone: Collection Date: Date Submitted To Lab:	David Brownt 5/16/02	- .0.e	
	6/11/162		••
Date Submitted To Lab:	3/16/08	LAB No.	
	5/17/02		
HWMB LOG NUMBER:		Field Blank	
File a separate Request Sheet for <u>each</u> sar	mple point)	1,550	
Analysis Needed By: Routine	Other (specif	 1y) _	
Sample Description (check one)		Sample ID AD66204	# (1844 ##414 @181 18#4
Wasia	Soil/Sediment	Location, HWMB	
Ground Water	Surface Water	 Description: CHROME W Collector: D. BROWNLEI 	
Concentration of Organics Requested (estin	mated): High Low Oth	Sample ID: AD66204	•
Describe Sample Including Source an		ncentrauorij;	
Applicable Hazardous Waste Codes (I	f known)	. 	
Special Precautions:			
			
			·
	ANALYSIS REQUIP		
(Note: Totals will always be run first. A TCI			old results)
1. TOTAL ORGANICS	N	していきだいかん フクロル きゃっとんし	
		UTRIZAGIS/MEULFATES	X
Semi-Volatiles			Eth Sal
Semi-Volatiles (Acid & Base/Neutral)	——F(COL EOTTLEP.Metals Scan	Pto.Se)
Semi-Volatiles (Acid & Base/Noutral) Volatiles		DOL BOTTL <mark>icen</mark> metals Scan ETAL BOTTNEGRY	
Semi-Volatiles (Acid & Base/Neutral)		COL EOTTLEP.Metals Scan	
Semi-Volatiles (Acid & Base/Noutral) Volatiles Pesticides		DOL BOTTL <mark>icen</mark> metals Scan ETAL BOTTNEGRY	
Semi-Volatiles (Acid & Base/Neutral) Volatiles Pesticides Herbicides Organophosphorous Pestici		COL BOTTLERMetals Scan (RYAS BA, Cd, Cr, NL ETAL BOTTHEBY MIDER BOTHLES CC VIALS	
Semi-Volatiles (Acid & Base/Noutral) Volatiles Pesticides Herbicides Organophosphorous Pestici PCB BETX	F0 	OOL BOTTL (REMetals Scan ETAL BOTTLEBOY MBER BOTTLES OC VIALS JLFIDES/PRENOLS	
Semi-Volatiles (Acid & Base/Neutral) Volatiles Pesticides Herbicides Organophosphorous Pestici	F0 	OOL BOTTL (REMetals Scan ETAL BOTTLEBOY MBER BOTTLES OC VIALS JLFIDES/PRENOLS	
Semi-Volatiles (Acid & Base/Neutral) Volatiles Pesticides Herbicides Organophosphorous Pestici PCB BETX Total Petroleum Hydrocarbo	F0	COL BOTTL REMetals Scan ETAL BOTTLES By MBER BOTTLES CO VIALS JUFIDES / PRENOUS UL AND GREASS	uests:
Semi-Volatiles (Acid & Base/Noutral) Volatiles Pesticides Herbicides Organophosphorous Pestici PCB BETX	F0	COL BOTTL REMetals Scan ETAL BOTTLES By MBER BOTTLES CO VIALS JUFIDES / PRENOUS UL AND GREASS	uests:
Semi-Volatiles (Acid & Base/Neutral) Volatiles Pesticides Herbicides Organophosphorous Pestici PCB BETX Total Petroleum Hydrocarbo	FC	COL BOTTLE Metals Scan ETAL BOTTLE BY MBER BOTTLES COL VIALS JUFIDES / PRENOLS L AND GREASS COL COLORS Preservation Confirm	uests:
Semi-Volatiles (Acid & Base/Neutral) Volatiles Pesticides Herbicides Organophosphorous Pestici PCB BETX Total Petroleum Hydrocarbo Organics Special Requests:	FC	COL BOTTLESMetals Scan ETAL BOTTLESDY MIDER BOTTLES COL VIALS JUFIDES / PRENOUS LE AND GREASS	uests:
Semi-Volatiles (Acid & Base/Noutral) Volatiles Pesticides Herbicides Organophosphorous Pestici PCB BETX Total Petroleum Hydrocarbo Organics Special Requests:	FC	COL BOTTLE Metals Scan ETAL BOTTLE BY MBER BOTTLES COL VIALS JUFIDES / PRENOLS L AND GREASS COL COLORS Preservation Confirm	nests:
Semi-Volatiles (Acid & Base/Neutral) Volatiles Pesticides Pesticides Organophosphorous Pestici PCB BETX Total Petroleum Hydrocarbo Organics Special Requests: 3. TCLP ORGANICS Volatiles Semi-Volatiles (Acid & Base	Idea FC An An An An An An An An An A	COL BOTTL R.Metals Scan ETAL BOTTLER By MBER BOT METAL Special Requ CC VIALS JUFIDES / PRENOUS L AND GREASS C Preservation Confirm By pH	nests:
Semi-Volatiles (Acid & Base/Neutral) Volatiles Pesticides Pesticides Organophosphorous Pestici PCB BETX Total Petroleum Hydrocarbo Organics Special Requests: 3. TCLP ORGANICS Volatiles Semi-Volatiles (Acid & Base Additional Specific Organic	Idea FC An An An An An An An An An A	COL BOTTLE Metals Scan ETAL BOTTLE BY MDER BOTTLES MDER BOTTLES METALS MDER BOTTLES METALS MDER BOTTLES MODER BOTTLES M	nests:
Semi-Volatiles (Acid & Base/Neutral) Volatiles Pesticides Pesticides Organophosphorous Pestici PCB BETX Total Petroleum Hydrocarbo Organics Special Requests: 3. TCLP ORGANICS Volatiles Semi-Volatiles (Acid & Base	Idea FC An An An An An An An An An A	COL BOTTLE Metals Scan ETAL BOTTLE BY MDER BOTTLES MDER BOTTLES METALS MDER BOTTLES METALS MDER BOTTLES MODER BOTTLES M	nests:
Semi-Volatiles (Acid & Base/Neutral) Volatiles Pesticides Pesticides Organophosphorous Pestici PCB BETX Total Petroleum Hydrocarbo Organics Special Requests: 3. TCLP ORGANICS Volatiles Semi-Volatiles (Acid & Base Additional Specific Organic	Ides FC And Con And And Con And And And And And And And A	COL BOTTLE Metals Scan ETAL BOTTLE BY MDER BOTTLES MDER BOTTLES METALS MDER BOTTLES METALS MDER BOTTLES MODER BOTTLES M	nests:
Semi-Volatiles (Acid & Base/Neutral) Volatiles Pesticides Pesticides Organophosphorous Pestici PC8 BETX Total Petroleum Hydrocarbo Organics Special Requests: 3. TCLP ORGANICS Volatiles Semi-Volatiles (Acid & Base Additional Specific Organic	Ides FC And Con And And Con And And And And And And And A	COL BOTTL RAS Bacca, Cr. NI. ETAL BOTTLES By METAL BOTTLES MER BOTTLES METAL BO	nests:
Semi-Volatiles (Acid & Base/Neutral) Volatiles Pesticides Pesticides Organophosphorous Pestici PCB BETX Total Petroleum Hydrocarbo Organics Special Requests: 3. TCLP ORGANICS Volatiles Semi-Volatiles (Acid & Base Additional Specific Organic 4. TCLP METALS ANALYSIS TCLP Metals (Ag,As,Ba,Cd,C	ides	COL BOTTL RAS Bacca, Cr. NI. ETAL BOTTLES By METAL BOTTLES MER BOTTLES METAL BO	nests:
Semi-Volatiles (Acid & Base/Neutral) Volatiles Pesticides Pesticides Herbicides Organophosphorous Pestici PCB BETX Total Petroleum Hydrocarbo Organics Special Requests: 3. TCLP ORGANICS Volatiles Semi-Volatiles (Acid & Base Additional Specific Organic 4. TCLP METALS ANALYSIS TCLP Metals (Ag,As,Ba,Cd,OMercury	ides	COL BOTTLES Metals Scan ETAL BOTTLES By MDER BOTTLES MDER BOTTLES METALS ME	nests:
Semi-Volatiles (Acid & Base/Neutral) Volatiles Pesticides Pesticides Herbicides Organophosphorous Pestici PCB BETX Total Petroleum Hydrocarbo Organics Special Requests: 3. TCLP ORGANICS Volatiles Semi-Volatiles (Acid & Base Additional Specific Organic 4. TCLP METALS ANALYSIS TCLP Metals (Ag,As,Ba,Cd,OMercury	ides	COL BOTTLES Metals Scan ETAL BOTTLES By MDER BOTTLES MDER BOTTLES METALS ME	nests:

RECPT TEMP O. O.

GEORGIA DEPARTMENT OF NATURAL RESOURCES ENVIRONMENTAL PROTECTION DIVISION

455 14th Street NW, Atlanta, GA 30318-7900 (404) 206-5269

LABORATORY REPORT

TO: Georgia Er	nv Protection Divison	Date Collected:	5/16/2002
Hazardous	Waste Mgmt Branch	Time Collected:	15:40
	St SE Suite 1154E	Sample Collector:	D. BROWNLEE
Atlanta, GA	A 30334	Chlorination:	
		Sample Type:	
	100004	Received By:	TNB
Sample ID:	AD66204	Date Received:	5/17/2002
Facility Name:	Chrome Wheel/ Hw Field Blank	Time Received:	10:58 AM
Site ID:	HWMB	Project:	HW
Location ID:		Reporting Date:	6/12/2002
Location Descr:	HW FIELD BLANK	Received Temperature:	0.0 ° C

	PARAMETER	EPA		QUALIF	IER		ANALYSIS	MCL or
NALYTE	CODE NO.	TE METHOD	RESULT	UNITS		ANALY	ST DATE	QC Range
QC Batch 49097								
Total Cyanide	00720	EPA 335.4	Not Detected	ug/L	25	BS	5/21/2002	
Target analyte list Metals\ICP	MS QC Batch 4913	32						
ım 9	01012	6020	Not Detected	ug/L	5	PT	6/7/2002	
/anadium 51	01087	6020	Not Detected	ug/L	50	PT	6/7/2002	
Chromium 52	01034	6020	Not Detected	ug/L	10	PT	6/7/2002	
Cobalt 59	01037	6020	Not Detected	ug/L	50	PT	6/7/2002	
lickel 60	01067	6020	Not Detected	ug/L	40	PT	6/7/2002	
Copper 65	01042	6020	Not Detected	ug/L	25	PΤ	6/7/2002	
inc 68	01092	6020	Not Detected	ug/L	20	PT	6/7/2002	
Arsenic 75	01002	6020	Not Detected	ug/L	10	PT	6/7/2002	
Selenium 82	01147	6020	Not Detected	ug/L	5	PT	6/7/2002	
Silver 107	01077	6020	Not Detected	ug/L	10	PT	6/7/2002	
Cadmium 111	01027	6020	Not Detected	ug/L	5	PT	6/7/2002	
Antimony 121	01097	6020	Not Detected	ug/L	60	PT	6/7/2002	
Barium 137	01007	6020	Not Detected	ug/L	200	PT	6/7/2002	
Thallium 205	01059	6020	Not Detected	ug/L	10	PT	6/7/2002	
ead 207	01051	6020	Not Detected	ug/L	3	PT	6/7/2002	
CP TAL Metals in Water QC I	Batch 49124			J				
Aluminum	01105	6010B	Not Detected	ug/L	200	LA	5/30/2002	
Calcium	00916	6010B	Not Detected	ug/L	5000	LA	5/30/2002	
ron	01045	6010B	Not Detected	ug/L	100	LA	5/30/2002	
Potassium	00937	6010B	Not Detected	ug/L	5000	LA	5/30/2002	
Magnesium	00927	6010B	Not Detected	ug/L	5000	LA	5/30/2002	
ug/L: micrograms/liter	<: less than			Laboratory Con	tacts:			
mg/L: milligrams/liter mg/kg: milligrams/kilogram ug/kg: micrograms/kilogram ug/g: micrograms/gram n: parts per million p: parts per billion org/L: organisms/liter	MCL: Maximum RL: Reporting Li LSPC: result les USPC: result gra TIE: Tentatively VIOL: Violation	mit s than lower spe eater than upper Identified or Est	ecification specification imated	Inorganics: Metals: Organics: GC Mass Spe Microbiology:	Pat Sa Mark T Danny ec: Steve I	Reed	404-206-5239 404-206-5240 404-206-5252 404-206-5260 404-206-5210	

Sample ID: AD66204 Page 1

	PARAMETER	EPA		QUA		ANALYSIS	MCL or	
ANALYTE	CODE NOTE	METHOD	RESULT	UNITS	RL /	ANALYS	ST DATE	QC Range
Monese	01055	6010B	Not Detected	ug/L	15	LA	5/30/2002	
Somain	00929	6010B	Not Detected	ug/L	5000	LA	5/30/2002	
QC Batch 49131								
Mercury	71900	EPA 7470	Not Detected	ug/L	0.2	PB	5/21/2002	

ug/L: micrograms/liter mg/L: milligrams/liter mg/kg: milligrams/kilogram ug/kg: micrograms/kilogram ug/g: micrograms/gram

m: parts per million b: parts per billion org/L: organisms/liter

<: less than

MCL: Maximum Contaminant Level

RL: Reporting Limit LSPC: result less than lower specification USPC: result greater than upper specification TIE: Tentatively Identified or Estimated VIOL: Violation (result exceeds MCL)

Laboratory Contacts:

Inorganics: Pat Sammons 404-206-5239 Metals: Mark Tolbert 404-206-5240 Organics: Danny Reed 404-206-5252 GC Mass Spec: Steve Bryan 404-206-5260 Microbiology: Viola Reynolds 404-206-5210

To: Georgia Env Protection Divison

Hazardous Waste Mgmt Branch 205 Butler St SE Suite 1154E

Atlanta, GA 30334

Sample ID: AD66208

Location Code: HWMB

Date Collected: 5/16/2002 4:00:00 PM

Date Received: 5/17/2002 11:13:00 AM

QA/QC Batch Name; HGTALS-49142

Project: HW

Sample Description: CHROME WHEEL SED-4 HW9006

Samples in Batch #: 49142

AD66208 AD66211 AD66213 AD66215

AD66218 AD66220

Analysis/Analyte	Result ug/kg (dw)	Method Blank ug/kg (dw)	Amount Spiked ug/kg (dw)	MS Result ug/kg (dw)	MS Dup Result ug/kg (dw)	MS Dup Precision ug/kg (dw)	MS Recovery %	LCS Result	LCS Dup Result ug/kg (dw)	LCS Dup Precision ug/kg (dw)	LCS Recovery %	
HGTALS	ND	<100	600	601	640	6.29	103	619	619	0.00	103	_

QA/QC BATCH REPORT

To: Georgia Env Protection Divison Hazardous Waste Mgmt Branch 205 Butler St SE Suite 1154E

Atlanta, GA 30334

Sample ID: AD66208

QA/QC Batch Name: \$TAL S-49146 Project: HW

Sample Description: CHROME WHEEL SED-4 HW9006

Samples in Batch #: 49146

AD66208 AD66211 AD66213 AD66215

AD66218 AD66220

Location Code: HWMB Date Collected: 5/16/2002 4:00:00 PM

Date Received: 5/17/2002 11:13:00 AM

Analysis/Analyte	Result ug/kg (dw)	Method Blank ug/kg	Amount Spiked ug/kg	MS Result ug/kg	MS Dup Result ug/kg	MS Dup Precision RPD	MS Recovery %	LCS Result ug/kg	LCS Dup Result ug/kg	LCS Dup Precision RPD	LCS Recovery %
\$TAL_S Aluminum	22000000	<200	100000	33000000	33000000	0.00	U*11000	102000	97400	4.61	102
\$TAL_S Antimony	ND	<60	50000	21300	19900	6.80	L*42.6	51300	52100	1.55	103
\$TAL_S Arsenic	56000	<80	50000	113000	116000	2.62	114	54400	51300	5.87	109
\$TAL_S Barium	51000	<200	50000	113000	115000	1.75	124	51700	48400	6.59	103
\$TAL_S Beryllium	ND	<5	50000	48500	48400	0.206	97.0	51600	48400	6.40	103
\$TAL_S Cadmium	ND	<5	50000	44000	43400	1.37	88.0	52700	49600	6.06	105
\$TAL_S Calcium	4300000	<5000	2500000	7660000	7610000	0.655	U*134	2410000	2270000	5.98	96.4
\$TAL_S Chromium	110000	<10	50000	192000	191000	0.522	U*164	52400	49500	5.69	105
\$TAL_S Cobalt	21000	<50	50000	73100	72900	0.274	104	52200	49300	5.71	104
\$TAL_S Copper	100000	<25	50000	177000	179000	1.12	U*154	50500	47200	6.76	101
\$TAL_S Iron	16000000	<100	100000	21000000	21000000	0.00	U*5000	105000	98300	6.59	105
\$TAL_S Lead	ND	<90	50000	52600	50600	3.88	105	53800	49100	9.14	108
\$TAL_S Magnesium	8800000	<5000	2500000	13000000	13000000	0.00	U*168	2700000	2540000	6.11	108
\$TAL_S Manganese	330000	<15	50000	411000	407000	0.978	U*162	51700	48700	5.98	103
\$TAL_S Nickel	190000	<40	50000	277000	277000	0.00	U*174	51200	48800	4.80	102
\$TAL_S Potassium	ND	<5000	2500000	2740000	2750000	0.364	110	2640000	2460000	7.06	106
\$TAL_S Selenium	ND	<190	50000	41000	35400	14.7	82.0	55800	49900	11.2	112
\$TAL_S Silver	ND	<10	10000	8590	8530	0.701	85.9	10500	9850	6.39	105
\$TAL_S Sodium	ND	<5000	2500000	3020000	3060000	1.32	121	2590000	2430000	6.37	104
\$TAL_S Thallium	ND	<200	50000	60000	57000	5.13	120	51000	49600	2.78	102
\$TAL_S Vanadium	21000	<50	50000	78100	78400	0.383	114	52800	49700	6.05	106
\$TAL_S Zinc	63000	<20	50000	127000	126000	0.791	128	51800	48800	5.96	104

Comments: \$R_TAL_S: ICP Metals - Matrix Spike had eight analytes, Aluminum (11000% recovery, limits 70-130%), Calcium (134% recovery, limits 70-130%), Chromium (164% recovery, limits 70-130%), Calcium (134% recovery, limits 70-130%), Chromium (164% recovery, limits 70-130%), Chromi 130%), Copper (154% recovery, limits 70-130%), Iron (5000% recovery, limits 70-130%), Magnesium (168% recovery, limits 70-130%), Manganese (162% recovery, limits 70-130%), and Nickel (174% recovery, limits 70-130%), with a percent recovery outside acceptable control limits due to high concentration of target analytes in sample. Matrix spike had one analyte, Antimony (42.6% recovery, limits 70-130%) with percent recovery outside acceptable control limits due to matrix interference. 2-053102-158

Comments: TAL_S: \$ ICP Metals - Reporting limits raised due to elevated levels of target analytes in sample

QA/QC BATTH REPORT

To: Georgia Env Protection Divison
Hazardous Waste Mgmt Branch

205 Butler St \$E Suite 1154E

Atlanta, GA 30334

Sample ID: AD66208

Location Code: HWMB

QA/QC Batch Name: CNTALS-49098

Project: HW

Date Collected: 5/16/2002 4:00:00 PM

Date Received: 5/17/2002 11:13:00 AM

Project: HW

Sample Description: CHROME WHEEL SED-4 HW9006

Samples in Batch #: 49098

AD66208 AD66211 AD66213 AD66215

AD66218 AD66220

Analysis/Analyte	Result ug/kg (dw)	Method Blank ug/kg (dw)	Amount Spiked ug/kg (dw)	MS Result ug/kg (dw)	MS Dup Result ug/kg (dw)	MS Dup Precision RPD	MS Recovery %	LCS Result ug/kg (dw)	LCS Dup Result ug/kg (dw)	LCS Dup Precision RPD	LCS Recovery %	
CNTALS	ND	<9000	20000	19800	19800	0.00	99.0	18800	18800	0.000	94.0	_

QA/QC BATCH REPORT

To: Georgia Env Protection Divison

Hazardous Waste Mgmt Branch

205 Butler St SE Suite 1154E

Atlanta, GA 30334

Sample ID: AD66200

Location Code: HWMB

QA/QC Batch Name: \$TAL_L-49124

Project: HW

Date Collected: 5/16/2002 3:40:00 PM
Date Received: 5/17/2002 10:58:00 AM

Sample Description: CHROME WHEEL/ SW-3 -HW90004

Ā

Samples in Batch #: 49124

AD66200 AD66201 AD66204

Analysis/Analyte	Result ug/L	Method Blank ug/L	Amount Spiked ug/L	MS Result ug/L	MS Dup Result ug/L	MS Dup Precision RPD	MS Recovery %	LCS Result ug/L	LCS Dup Result ug/L	LCS Dup Precision RPD	LCS Recovery %
\$TAL_L Aluminum	2700	<200	1000	5230	5220	0.191	U*253	1040	1030	0.966	104
\$TAL_L Calcium	13000	<5000	25000	37000	36800	0.542	96.0	24200	24300	0.412	96.8
STAL_L Iron	1400	<100	1000	2760	2750	0.363	U*136	1030	1030	0.00	103
\$TAL_L Magnesium	ND	<5000	25000	31300	31200	0.320	125	27100	27200	0.368	108
\$TAL_L Manganese	62	<15	500	552	550	0.363	98.0	517	520	0.579	103
\$TAL_L Potassium	ND	<5000	25000	29100	29000	0.344	116	25800	25900	0.387	103
\$TAL_L Sodium	5900	<5000	25000	31600	31600	0.00	103	25800	25900	0.387	103

Comments: \$R_TAL_L: ICP Metals - Matrix Spike had two analytes, Aluminum (253% recovery, limits 70-130%), and Iron (136% recovery, limits 70-130%), with a percent recovery outside acceptable control limits due to high concentration of target analytes in sample. 2-053102-157

QA/QC BATCH REPORT

To: Georgia Env Protection Divison Hazardous Waste Mgmt Branch 205 Butler St SE Suite 1154E

Atlanta, GA 30334

Sample ID: AD66200

QA/QC Batch Name: HG7470-49131

Project: HW

Samples in Batch #: 49131

AD66200 AD66201

AD66204

Location Code: HWMB

Date Collected: 5/16/2002 3:40:00 PM

Sample Description: CHROME WHEEL/ SW-3 -HW90004

Date Received: 5/17/2002 10:58:00 AM

	Analysis/Analyte	Result ug/L	Method Blank ug/L	Amount Spiked ug/L	MS Result ug/L	MS Dup Result ug/L	MS Dup Precision % RSD	MS Recovery %	LCS Result ug/L	LCS Dup Result ug/L	LCS Dup Precision RPD	LCS Recovery %	
HG7470		ND	<0.2	3.00	3.22	3.30	2.45	109	3.20	3.07	4.15	107	

QA/QC BAT TH REPORT

To:

Georgia Env Protection Divison

Hazardous Waste Momt Branch

205 Butler St SE Suite 1154E

Atlanta, GA 30334

Sample ID: AD66204

Location Code: HWMB

Date Collected: 5/16/2002 3:40:00 PM Date Received: 5/17/2002 10:58:00 AM

QA/QC Batch Name: \$IM\$TL-49132

Project: HW

Sample Description: CHROME WHEEL/ HW FIELD BLANK

Samples in Batch #: 49132

AD66200 AD66201 AD66204

Method MS MS Dup MS Dup MS LCS LCS Dup LCS Dup LCS **Amount** Analysis/Analyte Result Blank Spiked Result Result Precision Recovery Result Result Precision Recovery RPD ug/L ug/L ug/L ug/L ug/L RPD % ug/L ug/L \$IMSTL Antimony 121 ND <60 100 112 113 0.889 112 108 107 0.930 108 \$IMSTL Arsenic 75 ND <10 100 107 112 4.57 107 106 101 4.83 106 \$IMSTL Barium 137 ND <200 100 194 192 1.04 114 109 105 3.74 109 \$IMSTL Beryllium 9 ND <5 100 110 113 2.69 110 107 104 2.84 107 \$IMSTL Cadmium 111 ND 108 <5 100 106 1.87 106 107 103 3.81 107 \$IMSTL Chromium 52 ND 100 108 112 3.64 108 106 102 3.85 <10 106 \$IMSTL Cobalt 59 ND < 50 100 107 109 1.85 107 107 104 2.84 107 \$IMSTL Copper 65 ND <25 100 109 114 4.48 109 109 106 2.79 109 \$IMSTL Lead 207 ND <3 100 110 112 1.80 110 108 107 0.930 108 ND \$IMSTL Nickel 60 <40 100 107 111 3.67 107 106 103 2.87 106 \$IMSTL Selenium 82 ND <5 500 527 554 5.00 105 527 508 3.67 105 \$IMSTL Silver 107 ND <10 20 21.5 21.6 0.464 108 21.0 20.9 0.477 105 \$IMSTL Thallium 205 ND <10 100 119 124 4.12 119 113 125 10.1 113 \$IMSTL Vanadium 51 ND <50 103 111 7.48 103 105 100 100 4.88 105 \$IMSTL Zinc 68 ND 107 <20 100 113 113 0.00 113 107 0.00 107

CN.

PAGE TWO	D: 1996 BENCHMARKS			
CAS #: 007440-36-0 Cas al Name: Antimony				
BENC	HMARKS			
AIR PATHWAY		SURE PATHWAY	•	
Parameter Value Unit	Parameter	Value Unit		
NAAQS/NESHAPS: ug/m3	Cancer Risk:	mg/kg		
Cancer Risk: mg/m3	Non Cancer Risk:	3.1E+01 mg/kg		
Non Cancer Risk: mg/m3		·		
	RAI	DIONUCLIDE	• •	
GROUND WATER PATHWAY	Parameter	Value Unit		
Parameter Value Unit	MCL:	6.0E-03 pCi/L	•	
MCL/MCLG: 6.0E-03 mg/L	UMTRCA:	pCi/kg		
Cancer Risk: mg/L	CANCER RISK	• • • • • • • • • • • • • • • • • • •	• • • •	en de la companya de La companya de la co
Non Cancer Risk: 1.5E-02 mg/L	Air:	pCi/m3	•	
	DW:	pCi/L		
	FC:	pCi/kg		
	Soil Ing:	pCi/kg		
	Soil Gam:	i. pCi/kg		
SHBEACE A	ATER PATHWAY			
Drinking Water		<u>ronmental</u>	•	
Parameter Value Unit	Parameter	Value Unit	•	
MCLG: 6.0E-03 mg/L	·· · · ACUTE	ug/L		
Cancer Risk: mg/L	Fresh AWQC:			
Non Cancer Risk: 1.5E-02 mg/L	Salt AWQC:	ug/L	. :-	
	Fresh AALAC:	ug/L		
Human Food Chain	Salt AALAC:	ug/L		
Parameter Value Unit	CHRONIC Fresh AWQC:	ug/L		
FDAAL: ppm	Salt AWQC:	ug/L		
Cancer Risk: mg/kg	Fresh AALAC:	ug/L		
Non Cancer Risk: 5.4E-01 mg/kg	Salt AALAC:	ug/L		

		DACE TI	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	DENCIMARY		-						
M 4	Þ		த் ∫ப: 199€	S BENCHMARK				٠.				
CAS #: 007	440-38-2						.: •.		·			
C al Name: Arso	enic		,		,				-			
		BEN	CHMARK	ÇŞ							-	-
<u>AIR PA1</u> Parameter	THWAY Value	Unit ::		<u>SOIL EXP</u> Parameter	OSURE P. Value	ATHWAY Unit	* * .		. •			
NAAQS/NESHAPS:		ug/m3	÷	Cancer Risk:	4.3E-0	⊸ `		•				
Cancer Risk:	5.7E-0	≓		Non Cancer Risk	<u> </u>	- ` · ·			•			
Non Cancer Risk:		 mg/m3	• • • •	•	L	ین	-					
				RA	DIONUCL	<u>IDE</u>	•				•	
GROUND WAT				Parameter	Value	Unit		•				
•	Value	Unit		MCL:	5.0E-0	12 pCi/L						
MCL/MCLG:	5.0E-0	2 mg/L	-	UMTRCA:		pCi/kg	1				-	
Cancer Risk:	5.7E-0	5 mg/L		CANCER RISK		<u></u> J						
Non Cancer Risk:	1.1E-0	2 mg/L		_ Air:		pCi/m3	٠					
		 .		DW:		pCi/L	•			•		
				FC:		pCi/kg		•			•	
			•	Soil Ing:		pCi/kg				:		
				Soil Gam:		pCi/kg				· ·		
	<u>s</u>	URFACE 1	WATER I	PATHWAY								
	ing Wate				ironmenta							
ameter	Value	Unit —	-	Parameter	Value	Unit					-	
MCLG:	5.0E-0	≓		ACUTE Fresh AWQC:	1.9E+0	12 ug/L						
Cancer Risk:	5.7E-0	- i:		Salt AWQC:	1.9E+0	-						
Non Cancer Risk:	1.1E-0	2 : mg/L		Fresh AALAC:		12 ug/L						
				Salt AALAC:	<u></u>)2: ug/L	•				•	
	Food Cha			CHRONIC								•
Parameter FDAAL:	Value	Unit		Fresh AWQC:	1.9E+0)2 ug/L						-
Cancer Risk:	2.15.0	ppm ppm		Salt AWQC:	1.9E+0	12 ug/L	•					
Non Cancer Risk:	2.1E-0	3 mg/kg 1 mg/kg		Fresh AALAC:	1.9E+0)2 ug/L						
HOR CONCERNAN.	4. IE-U			Salt AALAC:	1.9E+0)2 ug/L						
		and a second of										

	<u></u>	SUPERF	UND CHEMICAL	DATA	A MATRIX	·						
21 2	▶ ▶	38 2	5			View Page	[wo					
CAS #:	007440-4	7-3		·	1							
Cal Name:	Chromium											
								·				
Parameter	TOXIO Value	CITY Unit	Source	1	T Parameter	OXICITY (Value	cont.) Unit	Source				-
Oral RfD:		= .	IRIS	ı	CHRONIC	T GIGE	O i iii	·				•
Inhal RfD:	5.UE-U3	mg/kg/day	inis		Fresh AWQC:	1.1E+01	-	WATCRIT		•		
}		mg/kg/day r			Salt AWQC:	5.0E+01	ug/L	WATCRIT		٠.		•
Oral Slope: Oral Wt-of-Evid:	* -](mg/kg/day)^-1* i			Fresh AALAC:		ug/L					
1					Salt AALAC:		ug/L		_			
Inhal Slope:		(mg/kg/day)^-1		. 1	Fresh Ecol LC50:	2.2E+01	ug/L	AQUIRE]			
Inhal Wt-of-Evid:	* A) 	IRIS		Salt Ecol LC50:	2.0E+03	ug/L	AQUIRE]			
Oral ED10:	_	mg/kg/day				ERSISTEN	ıcr					
Oral ED10 Wgt: 1		} - 	OBUSH		r Parameter	Value	uce Unit	Source				
inhal ED10:	2.6E-03	mg/kg/day	SPHEM		LAKE - Halflive	,		000.00				
Inhal ED10 Wgt:	* A	<u> </u> 	SPHEM		Hydrolysis:	3	days] :			•
Oral LD50:		mg/kg 			Volatility:		days		1			
Dermal LD50:		mg/kg			Photolysis:		ı days	<u> </u>	1.			
Gas Inhal LC50:		ppm		I	Biodeg:		: days		1 .			
Dust Inhal LC50:		mg/L N=is is (=CD↑ 1		ş	Radio:		days		1			
*For radionucl *For radionucl			, the source is N/	Α ,	RIVER - Halfliv	De	ļ. ·		4			· .
TE NAWQC:				•					T i			
Salt AWQC:	1.6E+01		WATCRIT		Hydrolysis:		days		<u> </u>			
	1.1E+03	,	WATCRIT		Volatility:		days days] 	:		
Fresh AALAC:		ug/L 			Photolysis: Biodeg:		uays	ļ]]!			
Salt AALAC:		ug/L			Radio:		days] - -			
							days	<u></u>	<u>}</u>			•
		•		Į.	Log Kow:	<u> </u>		<u></u>	<u>]</u> ;		• •	•
		•									•	
			•									7 5 W
L				*** - ** **		اد اد پښواميد د د مساد		-				en en veren e en

			o ellectrine		TA 222 TONE.	
	٠	PAGE IW	O: SUPERFUND	LHEMILAL DA	IIA MAIRIX	
श्र न	▶ ▶ 1	}% E				
CAS #:	007440-47	3	!	لمنصف	•	
mical Name:				<u> </u>		
The drivatile.	Critomium					
	MOBIL	ITY			PHYSICAL CHARACTERISTICS	
Parameter	Value	Unit	Source	Parameter	Value	
Vapor Press:	T dide		- Source	Metal Contain		
Henry's Law:		Torr atm-m3/mol		Organic:	False	
	<u> </u>			Gas:	False	
Water Solub:		mg/L [200 1/2	•	True	
Distrib Coef:	1.9E+01	mL/g	SSG_KD	Particulate:		to the second second
Geo. Mean Sol:	7.9E+04		•	Radionuclide:	<u></u>	
	BIOACCU	MULATION		Rad. Element:		
Parameter 1	Value	Unit	Source	Molecular We		,
FOOD CHAIN			•	Density: 7.1	E+00 g/mL @ degrees C	
Fresh BCF:	1.0E+00		VER_BCF		OTHER DATA	
Salt BCF:	1.9E+02		VER_BCF	Melting Point:	1900 degrees C	and the second
ENVIRONMEN	TAL		*	Boiling Point:	2642 degrees C	
Fresh BCF:	1.0E+00	_	VER_BCF	Formula:	Cr	-] ;
Salt BCF:	1.9E+02		VER_BCF			_ ,
Log Kow:			}	Toxicity:	CLASS INFORMATION	-
Water Solub:		mg/L		Tonicky.	018540-29-9	
	L		<u> </u>	GW Mob:	018540-29-9	
			-	Other:		
• .					The second secon	
-						-
		:			<u>.</u>	
•		• • • •				· · · · · · · · · · · · · · · · · · ·
		•••			•	
			-		· · · · · · · · · · · · · · · · · · ·	
	ratarenemen. a s	· · · · · · · · · · · · · · · · · · ·	Marananan da dipendentian departus	manager and the second	ಗ್ರಾಮಿಯ ⁽ ಟ್ಟಿಸಿಗಳು ಕಾರ್ಯಕ್ಷಿಗಳು ನಿರ್ವಹಿಸಿದ ಕಾರ್ಯಕ್ಷಿಗಳು ಕಾರ್ಯಕ್ಷಿಗಳು ಕಾರ್ಯಕ್ಷಿಗಳು ಕಾರ್ಯಕ್ಷಿಗಳು ಕಾರ್ಯಕ್ಷಿಗಳು	

		PAGE TV	√n: 199	6 BENCHMARKS	,						
21 2	>		e I						· : •		
CAS #: 100744	140-47-3	<u> </u>		.*		. •					
Chron								•			
di Hamo. Onio.	Illum								·		
		BEN	YCHMARI	KS							
AIR PATH	HWAY			SOIL EXPO				:		÷,	•
	Value	Unit		Parameter	Value	Unit	• •				•
NAAQS/NESHAPS:		ug/m3	2.00	Cancer Risk:		mg/kg			-		
Cancer Risk:	2.0E-07	7 mg/m3	•	Non Cancer Risk:	3.9E+02	mg/kg	• •	•	٠.		,
Non Cancer Risk:		mg/m3				£				erin erin erin erin erin erin erin erin	
, 	** PARTI		g mg in	RAD	DIONUCLII	<u>DE</u>			-		
GROUND WATE				Parameter	Value	Unit	•				
		Unit		MĊL:	1.0E-01]; pCi/L					
MCL/MCLG:	1.0E-0	11 , mg/L		:UMTRCA:		pCi/kg	. ~				
Cancer Risk:		mg/L		CANCER RISK		٠٠٠ (اب					
Non Cancer Risk:	1.8E-0	mg/L		Air:		pCi/m3	•				-
		-		DW:] pCi/L			ı		
				FC:		pCi/kg	• •	-			 <u>.</u> .
				Soil Ing:		pCi/kg			-		; · - . •
-		· ·.	-	Soil Gam:		j pCi/kg					
, -	S	паерсе	WATER	PATHWAY		J: F					
<u>Drinkir</u>	<u>ہ۔</u> ng Wate		**************************************		ronmental						
ameter	Value	Unit		Parameter	Value	Unit					. · .
MCLG:	1.0E-01	1 mg/L		ACUTE	1.1E+01	1 ug/L					
Cancer Risk:		mg/L	٠	Fresh AWQC:	1.1E+01	⊣	-				
Non Cancer Risk:	1.8E-01	1 mg/L		Salt AWQC: Fresh AALAC:	1.1E+01	- : ⁻.					• -
•				Salt AALAC:	<u></u>	≓				•	
<u>Human Fo</u>					1.1E+01	∫ nā⁄r					
_	Value	Unit		CHRONIC Fresh AWQC:	1.1E+01	ug/L					
FDAAL:		ppm	· · · · -	Salt AWQC:	1.1E+01	≓		• .			
Cancer Risk:		mg/kg		Fresh AALAC:	1.1E+01	_					
Non Cancer Risk:	6.8E+00	0 mg/kg		Salt AALAC:		 1 ug/L	* ·		•	100	

atum muni ang 2¹ ng 12 ng mga kanasan at ang mga kanasananan ng pagtananan manasan mga

.

										
	1996 ASSIGNED FACTOR VALUES									
22 3	•	। 🎇 हि		View	Page Two					
CAS #:	CAS #: 007440-50-8									
Chemical Name	Chemical Name: Copper									
					<u> </u>					
AIR PATH	<mark>√AY</mark> <u>6</u>	ROUND WATER		SOIL EXPOSU	RE PATHWAY					
Parameter	Value	Parameter	Value	Parameter	Value					
Toxicity:		Toxicity:		Toxicity:						
Gas Mobility:	0.0000	Water Solub:	9.0E+02							
Gas Migration:	0	Distrib:	4.3E+02							
}		SURFACE WAT	TER PATHWA	Y						
<u>Drinking W</u>	<u>ater</u>	<u>Human Food</u>	<u>l Chain</u>	<u>Environme</u>	<u>ntal</u> ·					
Parameter	Value	Parameter	Value	Parameter	Value ·					
Toxicity:		Toxicity:		Fresh Tox:	100					
				Salt Tox:	100					
Persistence	1 0000	Persistence	1.0000	Persistence	0000					
River:	1.0000	River:	1.0000		0000					
Lake:	1.0000	Lake:	1.0000	Lake:	.0000					
		Bioaccumulation	on	Bioaccumulation	on"					
		Fresh:	50000.0	Fresh:	50000.0					
		Salt:	50000.0	Salt:	50000.0					
				-						
1		•			, . 14 54					
موقعتها والمادان	. 		· · · · · · · · · · · · · · · · · · ·		- 					

	-				
	1	PAGE TWO: 19	996 BENCHMARKS	5	
21 4	Þ	ÞI €			
CAS #: 007	7440-50-8				
Callad Name: Cop	oper				
		BENCHMA	DMC		
AIR PA	TUWAY	BEIGGIIMA		OSURE PATHWAY	
Parameter	Value	Unit	Parameter	Value Unit	
NAAQS/NESHAPS:		ug/m3	Cancer Risk:	mg/kg	
Cancer Risk:		_; _mg/m3	Non Cancer Risk:	: ·	
Non Cancer Risk:		mg/m3		<u> </u>	
	L	بالـــانـــا الـــا	RA	<u>DIONUCLIDE</u>	
GROUND WAT	ER PATH	<u>WAY</u>	Parameter	Value Unit	
Parameter	Value	Unit	MCL:	1.3E+00 pCi/L	
MCL/MCLG:	1.3E+00	mg/L	UMTRCA:	pCi/kg	
Cancer Risk:		mg/L	CANCER RISK		
Non Cancer Risk:		mg/L	Air:	pCi/m3	
		· ·	DW:	pCi/L	
			FC:	pCi/kg	
		• •	Soil Ing:	pCi/kg	
		•	Soil Gam:	pCi/kg	
	SI	URFACE WATE	R PATHWAY		
<u>Drink</u>	cing Water			ronmental	
meter	Value	Unit	Parameter	Value Unit	
MSZ/MCLG:	1.3E+00	mg/L	ACUTE Fresh AWQC:	1.2E+01 ug/L	
Cancer Risk:		mg/L	Salt AWQC:	1.2E+01 ug/L	
Non Cancer Risk:		mg/L	Fresh AALAC:	1.2E+01 ug/L	
			Salt AALAC:	1.2E+01 ug/L	
	Food Chai		CHRONIC	<u> </u>	•
Parameter	Value	Unit 1	Fresh AWQC:	1.2E+01 ug/L	
FDAAL:		ppm	Salt AWQC:	1.2E+01 ug/L	· · · · · · · · · · · · · · · · · · ·
Cancer Risk:		mg/kg	Fresh AALAC:	1.2E+01 ug/L	·
Non Cancer Risk:	1	mg/kg	C	1.05.01 110/	

1.2E+01 ug/L

Salt AALAC:

SUPERFUND CHEMICAL DA	TA MATRIX		
N 0 ► N % &		View Page Two	
CAS-#: 000057-12-5		<u>!</u> 1	
Cal Name: Cyanide	;		
TOXICITY Parameter Value Unit Source	Parameter	TOXICITY (cont.) Value Unit Source	
	CHRONIC -	Y GIGC OTHE SOURCE	
Oral RfD: 2.0E-02 mg/kg/day IRIS	Fresh AWQC:	5.0E+00 ug/L WATCRIT	
Inhal RfD: mg/kg/day	Salt AWQC:	ug/L	
Oral Slope: (mg/kg/day)^-1*	Fresh AALAC:	ug/L	
Oral Wt-of-Evid: *	Salt AALAC:	ug/L	
Inhal Slope: (mg/kg/day)^1*	Fresh Ecol LC50:		
Inhal Wt-of-Evid: *	Salt Ecol LC50:	1.1E+02 ug/L AQUIRE	
Oral ED10: mg/kg/day	34K 2001 2030.	ug/L	<u>}</u>
Oral ED10 Wgt: *	I	PERSISTENCE	
Inhal ED10: mg/kg/day	Parameter	Value Unit Source	
Inhal ED10 Wgt:	LAKE - Halflive	es	· · · · · · · · · · · · · · · · · · ·
Oral LD50: 6.0E+00 mg/kg ACGIH	Hydrolysis:	days	
	Volatility:	days	
	Photolysis:	days	
<u></u>	Biodeg:	days	
Dust Inhal LC50: mg/L *For radionuclides, the Unit is (pCi)^-1	Radio:	days	·
* For radionuclide weights of evidence, the source is NA	RIVER - Halflis	<u> </u>	! .
AWQC: 2.2E+01 ug/L WATCRIT			1.
	Hydrolysis: Volatility:	days days	
<u></u> ,	-	days	·
Fresh AALAC: ug/L	Photolysis:	Land a land	i '.
Salt AALAC: ug/L	Biodeg:	days	
•	Radio:	days	
	Log Kow:		
		•	
	-		
is the substitution of the property of the substitution of T_{ij} and T_{ij} and T_{ij} and T_{ij} and T_{ij} and T_{ij} are substitution of T	The statement of the second	grandina i i i i i i i i i i i i i i i i i i	and the state of t

PAGE	TWO: SUPERFUND C	HEMICAL DATA	MATRIX	
		TEMICAL DATA	MAIDIA	
N 9 - 1 %	E			
CAS #: 000057 12 5				
mical Name: Cyanide				
MODILITY		DUV	CICAL CHARACTERISTICS	
MOBILITY	£		SICAL CHARACTERISTICS	
Parameter Value Unit Vapor Press:	Source	Parameter Metal Contain:	Value False	
	,	Organic:	False	
Henry's Law: atm-m3/i	mol	Gas:	False	
Water Solub: mg/L		Particulate:	True	
Distrib Coef: 9.9E+00 mL/g		Radionuclide:	False	
Geo. Mean Sol:		Rad. Element:	False	
BIOACCUMULATI	ON	4	raise	
Parameter Value Unit	Source	Molecular Weight:	g/mL @ degrees C	٦
FOOD CHAIN		Density:		
Fresh BCF:			OTHER DATA	
Salt BCF:		Melting Point:	degrees C	
ENVIRONMENTAL Fresh BCF:		Boiling Point:	degrees C	
Salt BCF:		Formula: CI	V(·)	
Log Kow:			CLASS INFORMATION	
Water Solub		Toxicity:	i	<u></u>
mg/L	-	GW Mob:		
		Other:		
	•	<u> </u>	· · · · · · · · · · · · · · · · · · ·	***
				••,
			•	
			•	
				er en de la companya
			n . merenan san enderden een en	

·	1996 ASSIGNED FACTOR	R VALUES
N 9 +	▶ 1 % € 6	View Page Two
CAS #: 000057	12-5	
Chemical Name: Cyanide		
AIR PATHWAY	GROUND WATER PATHWAY	SOIL EXPOSURE PATHWAY
Parameter Value	Parameter Value	Parameter Value
Toxicity: 100	Toxicity: 100	Toxicity: 100
Gas Mobility: 0.0000	Water Solub:	• '',
Gas Migration: 0	Distrib: 9.9E+00	7 1 1 1 1 1 1
	SURFACE WATER PATHWA	<u>Y</u>
<u>Drinking Water</u>	<u>Human Food Chain</u>	<u>Environmental</u>
Parameter Value	Parameter Value	Parameter Value
Toxicity: 100	Toxicity: 100	Fresh Tox: 1000
	<u> </u>	Salt Tox: 1000
Persistence	_ Persistence	Persistence
River: 0.4000	River: 0.4000	River: 0.4000
Lake: 0.0700	Lake: 0.0700	Lake: 0.0700
· · · · · · · · · · · · · · · · · · ·	Bioaccumulation	Bioaccumulation
	Fresh: 0.5	Fresh: 0.5
	Salt: 0.5	Salt: 0.5
. •		
		<u> </u>

· · · · · · · · · · · · · · · · · · ·		AGE TWO	1996 PE	NCHMARKS							
20 0	1.	AGE TWO	1330 05	NEHMARKS							
. 50 0	l l	1 5	╛.								•
CAS #: 000	0057-12-5	٦;			•		• :		·.		
C al Name: Cya	enide	<u> </u>			i						
					; ;	·					
		BENCH	IMARKS								
AIR PA				SOIL EXPO							_
Parameter NAAQS/NESHAPS:	Value	Unit		r ameter ncer Risk:	Value	Unit	•	÷	٠,		- · · · · · · · · · · · · · · · · · · ·
.]		ug/m3				mg/kg			-		
Cancer Risk:		mg/m3	Nor	n Cancer Risk:	1.6E+03	mg/kg	·		. •		:
Non Cancer Risk:		mg/m3		RAF	HONUCLIE)F					
GROUND WAT	ER PATHV	√AY	D _n .			<u>/-</u> Unit					
Parameter	Value L	Jnit	rai MCI		2.0E-01	.					
MCL/MCLG:	2.0E-01	mg/L		TRCA.	2.UE-U1	i pCi/kg	•				
Cancer Risk:		mg/L		NCER RISK	L	Perkg					
Non Cancer Risk:	7.3E-01	mg/L		NUEN NION Air:		pCi/m3	•				·
	<u> </u>	<u>.</u> ; –		DW:		pCi/L					•
				FC:			-				-
				Soil Ing:		pCi/kg pCi/kg					
				Soil Gam:		pCi/kg					•
	en	IRFACE WA			Ļ	pointg					
Drink	<u>su</u> king Water		HEN FAIL		onmental						•
ameter	Value	Unit		ameter	Value	Unit					
mez/MCLG:	2.0E-01	mg/L	ACL C	JTE sh AWQC:	5.2E+00	Tun/I				•	·
Cancer Risk:		mg/L		sn Awgc. t AWQC:	5.2E+00	- i				** *	:
Non Cancer Risk:	7.3E-01	mg/L	-	sh AALAC:	5.2E+00	-				•	
				t AALAC:	5.2E+00	≓ ;					•
	Food Chair			RONIC	3.22.700] agr	-				
Parameter	Value	Unit 		sh AWQC:	5.2E+00	ug/L .					· · · · · · · · · · · · · · · · · · ·
FDAAL:	<u></u>	ppm	Sal	t AWQC:	5.2E+00	ug/L	٠				•
Cancer Risk: Non Cancer Risk:	2.75 01	mg/kg	Fre	sh AALAC:	5.2E+00	ug/L				-	
Non Lancer Hisk:	2.7E+01	mg/kg	Sal	t AALAC:	5.2E+00	ug/L.					• •
Lister water strain.		=		. Arthermore a	- 77A			- 4	endirent.	garan samurang	

	····	SUPERF	UND CHEMICA	L DAT	A MATRIX				
N J	▶ ▶1	% F	5			View Page	Two	•	
CAS #:	007439-9	32-1		-			لبـــا		The state of the second se
Carpal Name:	Lead		· ·						
c controlle:									
Parameter	TOXI Value	CITY Unit	Source		Parameter CHRONIC	TOXICITY (Value	cont.) Unit	Source	
Oral RID:		mg/kg/day			Fresh AWQC:	3.0E+00	ug/L	WATCRIT	
Inhal RfD:		mg/kg/day			Salt AWQC:	8.5E+00	ug/L	WATCRIT	
Oral Slope:		(mg/kg/day)^-1			Fresh AALAC:		ug/L		
Oral Wt-of-Evid: *	•				Salt AALAC:		ug/L		
Inhal Slope:		(mg/kg/day)^-1			Fresh Ecol LC50:	5.3E+02	ug/L	AQUIRE	
Inhal Wt-of-Evid:	*				Salt Ecol LC50:	3.1E+03	ug/L	AQUIRE	
Oral ED10:		mg/kg/day			,	* · · · · · · ·	. –	**************************************	•
Oral ED10 Wgt:	`					PERSISTEI		~	
Inhal ED10:	·	mg/kg/day			Parameter	Value	Unit	Source	
Inhal ED10 Wgt:					LAKE - Halflive	es]		
Oral LD50:		mg/kg			Hydrolysis: Volatility:	1	days days		
Dermal LD50:		mg/kg			Photolysis:		ن نا		
Gas Inhal LC50:		ppm			Biodeg:		days days		l
Dust Inhal LC50:		mg/L			Radio:		days		
*For radionucli			.	LI A			Logys		
* For radionucl	ide weigr	" Its of exidence	, the source is	NA	RIVER - Halflis	/es			
Huan AWQC:	8.2E+01	ug/L	WATCRIT		Hydrolysis:		' days		
Salt AWQC:	2.2E+02	ug/L ·	WATCRIT		Volatility:		days		
Fresh AALAC:		ug/L			Photolysis:		days		
Salt AALAC:		ug/L			Biodeg:		days		
					Radio:		days		
					Log Kow:				
						,	•		
		,							
	भ्वाह कर	- and and the second of the	- 11. / 10 mm max max max		eres to starting	- <u> </u>		<u> </u>	

	····-	PAGE T	WO: SUPERFUI	ND CHEMICAL DA	TA MATRIX	
M 2	▶ , ▶ 1	%	ي			
CAS #:	007439-92	2-1				
mical Name:	Lead		·			
	MOBIL	JTY			PHYSICAL CHARACTERISTICS	-
Parameter	Value	Unit	Source	Parameter	Value	
Vapor Press:		Torr		Metal Contain:	True	
Henry's Law:		atm-m3/mo	ı	Organic:	False	
Water Solub:		mg/L		Gas:	False	
Distrib Coef:	9.0E+02	mL/g	BAES_KD	Particulate:	True	
Geo. Mean Sol:	1.5E-01			, Radionuclide:	False	
	BIOACCU	IMULATIÓI	N	Rad. Element:	False	
Parameter	Value	Unit	Source	Molecular Wei		
FOOD CHAIN			,	Density: 1.1	E+01 g/mL @ 16 degrees C	
Fresh BCF:	4.5E+01		VER_BCF		OTHER DATA	
Salt BCF:	2.6E+03]	VER_BCF	Melting Point:	328 degrees C	
ENVIRONMEN				Boiling Point:	1740 degrees C	# * **
Fresh BCF:	1.7E+03	li N	VER_BCF	Formula:	Рь	
Salt BCF:	2.6E+03		VER_BCF		CLASS INFORMATION	
Log Kow: Water Solub:			1	Toxicity:		
water solub.		mg/L	,	GW Mob;		
			•	Other:		
				other.	<u></u> ;	
	•					
			:			
·						
				•		

	~		·					
		PAGE TWO	: 1996 BENCHMARK	S		• • • •		
প্ৰা এ	D	ÞI å	1		+2	1 1		e e e e
<u> </u>	 							
CAS #: 00	7439-92-1	,	•					
C al Name: Le	ad			<u> </u>				
								
		BENCI	HMARKS					
	THWAY		SOIL EXP	<u>POSURE P</u>				
Parameter	Value	Unit	Parameter	Value	Unit		•	
NAAQS/NESHAPS	1.5E+0] ug/m3	Cancer Risk:		mg/kg			
Cancer Risk:		mg/m3	Non Cancer Ris	k:	mg/kg			
Non Cancer Risk:		mg/m3	·		 .			
6561015 L 113		.	<u>B/</u>	<u> ADIONUCL</u>	<u>IDE</u>			
GROUND WAT			Parameter	Value	Unit			
Parameter		Unit -	MCL:	1.5E-0	02 pCi/L	٠		19 1 <u>1</u> 1
MCL/MCLG:	1.5E-02	g mg/L	UMTRCA:		pCi/kg			
Cancer Risk:		mg/L	CANCER RISK			•	. •	
Non Cancer Risk:		mg/L	Aic		pCi/m3			
		٠,٠	DW: .		pCi/L			•
			FC:		pCi/kg			
			Soil Ing:		pCi/kg			• •
•		-	Soil Gam:		pCi/kg			
	SI	JRFACE W	ATER PATHWAY					
<u>Drin</u>	king Wate			<u>vironmenta</u>	1			
əmeter	Value	Unit	Parameter	Value	Unit			
MSZ/MCLG:	1.5E-02	mg/L	ACUTE Fresh AWQC:	3.2E+	00 ug/L			
Cancer Risk:		mg/L	Salt AWQC:	3.2E+				
Non Cancer Risk:		mg/L	Fresh AALAC:	3.2E+I				
			Salt AALAC:	<u> </u>	00 ug/L		•	
	Food Cha		CHRONIC	1 0.22	oo ugre			
Parameter	Value	Unit	Fresh AWQC:	3.2E+	00 ug/L			
FDAAL:		j: ppm	Salt AWQC:	3.2E+0	00 ug/L		•	•
Cancer Risk:		mg/kg	Fresh AALAC:	3.2E+0	00 ug/L			•
Non Cancer Risk:		mg/kg	Salt AALAC:	3.2E+(00 ug/L			

n na marija ang kanara na sa sa arawa

ಂತ್ರ ಕ್ಷಾರವರು ಮುಖ್ಯಯ ಕ್ಷಾರ್ಯ ಕ್ಷಾರ್ಟ್ ಕ್ಷ್ಮಾರ್ ಕ್ಷ್ಮಾರ್ ಕ್ಷ್ಮಾರ್ ಕ್ಷ್ಮಾರ್ ಕ್ಷ್ಮಾರ್ ಕ್ಷ್ಮಾರ್ ಕ್ಷ್ಮಾರ್ ಕ್ಷ್ಮಾರ್

SUPERFUND CHEMICAL DA	ATA MATRIX	A CONTRACTOR OF THE CONTRACTOR
21 J P N % & 6	View Page Tw	
CAS #: 007439-97-6	<u> </u>	
Cal Name: Mercury		· · · · · · · · · · · · · · · · · · ·
TOXICITY Parameter Value Unit Source	TOXICITY (co Parameter Value U	nt.) Init Source
	CHRONIC	
		g/L WATCRIT
1 332 33 1 33 23	- <u>Z.3E-02</u> u	g/L WATCRIT
Oral Slope: (mg/kg/daý)^-1*	Fresh AALAC: u	g/L
Oral Wt-of-Evid: *	Salt AALAC: u	g/L
Inhal Slope: (mg/kg/day)^-1*	Fresh Ecol LC50: 4.8E+00 u	g/L AQUIRE
Inhal Wt-of-Evid: *	Salt Ecol LC50: 1.0E+01	_{g/L} AQUIRE
Oral ED10: mg/kg/day	PERCICATION	_
Oral ED10 Wgt: *	PERSISTENCI Parameter Value U	nit Source
Inhal ED10: mg/kg/day	•	nii Souice
Inhal ED10 Wgt:	LAKE - Halflives	
Oral LD50: mg/kg	<u> </u>	ays THOMAS
Dermal LD50: mg/kg		
Gas Inhal LC50: ppm :		ays
Dust Inhal LC50: mg/L		ays
*For radionuclides, the Unit is (pCi)^-1	Radio: d	ays
* For radionuclide weights of evidence, the source is NA	RIVER - Halflives	
AWQC: 2.4E+00 ug/L WATCRIT	Hydrolysis: d	ays
Salt AWQC: 2.1E+00 ug/L WATCRIT	Volatility: 1.3E+00 d	ays THOMAS
Fresh AALAC: ug/L	Photolysis: de	ays
Salt AALAC: ug/L	Biodeg: da	ays ays
	Radio: de	ays .
	Log Kow:	
: · · ·	 ,	· · · · · · · · · · · · · · · · · · ·
	valuation of the transfer of the or	

PAGE TWO: SUPERFUND (CHEMICAL DATA MATRIX
원 년 ► ►1 왕 년 CAS #: 007439-97-6	
emical Name: Mercury	
MOBILITY	PHYSICAL CHARACTERISTICS
Parameter Value Unit Source	Parameter Value
Vapor Press: 2.0E-03 Torr CHEMFATE	Metal Contain: True
Henry's Law: 1.1E-02 atm-m3/mol LIVECHEM	Organic: False
Water Solub: mg/L	Gas: True
Distrib Coef: 5.2E+01 mL/g SSG_KD	Particulate: True
Geo. Mean Sol: 7.7E-08	Radionuclide: False
BIOACCUMULATION	Rad. Element: False
Parameter Value Unit Source	Molecular Weight: 2.006E+02
FOOD CHAIN	Density: 1.4E+01 g/mL @ 20 degrees C
Fresh BCF: 8.6E+04 VER_BCF	OTHER DATA
Salt BCF: 4.0E+04 VER_BCF	Melting Point: 38.87 degrees C
ENVIRONMENTAL	Boiling Point: 356.72 degrees C
Fresh BCF: 8.6E+04 VER_BCF	Formula: Hg
Salt BCF: 4.0E+04 - VER_BCF	CLASS INFORMATION
Log Kow:	Toxicity:
water struck	GW Mob:
	Other:
	- Suid.
A Company of the Comp	
Language and the contraction of	

		ACE TH	n. 1996	BENCHMARKS	·				 	
N A			້ ລັ	DENCHMANNS					·	
CAS #: 007	439-97-6] :								
Cal Name: Mer		Ji	11.147]	:				
		BEN	CHMARK	ζ S			and that shipping			
AIR PAT					DSURE PAT					
Parameter .	Value	Unit		Parameter	Value	Unit 				•
NAAQS/NESHAPS:		ug/m3		Cancer Risk:		mg/kg				
Cancer Risk:		mg/m3		Non Cancer Risk:	2.3E+01	mg/kg				
Non Cancer Risk:	3.1E-04	mg/m3		DAI	DIONUCLID	c	,			
GROUND WAT	EB PATHV	VAY								
	•	 Jnit	•	Parameter		Unit		•		
MCL/MCLG:	2.0E-03	4.		MCL:	2.0E-03					
Cancer Risk:	2.02.03	mg/L		UMTRCA:		pCi/kg	•	• •	•	
Non Cancer Risk:	1.1E-02	i		CANCER RISK Air:		pCi/m3	•			
rion Cancer risk.	1.12-02	jg. 2					•			
			-	DW:		pCi/L				·
				FC: Soil Ing:		pCi/kg				
				_		pCi/kg				
		-,		Soil Gam:		pCi/kg		i		
Drink	<u>SU</u> ing Water	RFACE \	#ATER I	PATHWAY	<u>ronmental</u>					
ameter	Value	Unit		Parameter Parameter	Value	Unit				
MEZ/MCLG:	2.0E-03	mg/L		ACUTE		i n				
Cancer Risk:		mg/L	-	Fresh AWQC:	1.2E-02					
Non Cancer Risk:	1.1E-02	mg/L		Salt AWQC:	1.2E-02	,				
		<u>.</u>	-	Fresh AALAC:	1.2E-02) - -				
<u>Human</u>	Food Chair	1		Salt AALAC:	1.2E-02	ug/L				
Parameter	Value	Unit		CHRONIC Fresh AWQC:	1.2E-02	ug/L			•	
FDAAL:	1.0E+00	ppm		Salt AWQC:	1.2E-02	i				
Cancer Risk:		mg/kg		Fresh AALAC:	1.2E-02	ug/L				
Non Cancer Risk:	4.1E-01	mg/kg	·	Salt AALAC:	1.2E-02	ug/L	، به محمدی وب	rentant in our rades for a	range on agrid	
				- production of the second	<u> </u>	<u>a danaman s</u>		The state of the s	2007 T 2017	

		SUPERF	UND CHEMICAL	DATA MATRIX			
N J	F	% E			View Page Two		t dan salah bilangan salah bilanga Salah salah sa
CAS #:	007440-0	2.0	·		<u> </u>		
cal Name:	Nickel						
	TOXII	rity			TOXICITY (cont.)		
Parameter	Value	Unit	Source	Parameter	Value Unit		
Oral RID:	2.0E-02	mg/kg/day	IRIS	CHRONIC Fresh AWQC:	1.6E+02 ug/L	WATCRIT	1
Inhal RfD:		mg/kg/day		Salt AWQC:	1.6E+02 ug/L 8.3E+00 ug/L	WATCHIT	
Oral Slope:		(mg/kg/day)^-1*	•	Fresh AALAC:	ug/L		
Oral Wt-of-Evid:	*	1		Salt AALAC:	ug/L		
Inhal Slope:		(mg/kg/day)^-1	•	Fresh Ecol LC50		AQUIRE	
Inhal Wt-of-Evid:	*			Salt Ecol LC50	5.1E+02 ug/L	AQUIRE	
Oral ED10:		mg/kg/day				1	!)
Oral ED10 Wgt:	*				PERSISTENCE		
Inhal ED10:	1.0E-01	mg/kg/day	SPHEM ,	Parameter	Value Unit	Source	
Inhal ED10 Wgt:	* A		SPHEM	LAKE - Halfliv		r	1)
Oral LD50:	5.0E+00	mg/kg.	RTECS	Hydrolysis:	days		
Dermal LD50:		mg/kg		Volatility: Photolysis:	days		
Gas Inhal LC50:		ppm		Biodeg:	days		
Dust Inhal LC50:		mg/L		Radio:	days		
i .		Unit is (pCi)^-1			days		
TE	ılde welgn	ts of eyidence	, the source is NA	RIVER - Halfli	ves- · · ·		
⊩⊷sh AWQC:	1.4E+03	ug/L	WATCRIT	Hydrolysis:	days		
Salt AWQC:	7.5E+01	ug/L	WATCRIT	Volatility:	days		
Fresh AALAC:		ug/L	<u>'</u>	Photolysis:	days		
Salt AALAC:		ug/L		Biodeg:	days		
				Radio:	days		<u>.</u>
				Log Kow.			
							en e
	· managanan aya			Litema allant et	· · · · · · · · · · · · · · · · · · ·		

PAGE TWO: SUPERFUND (CHEMICAL DATA MATRIX
의 ▶ ► 3 일 CAS #: 007440·02·0	
Shemical Name: Nickel	
Mod Name.	
MOBILITY	PHYSICAL CHARACTERISTICS
Parameter Value Unit Source	Parameter Value
Vapor Press: Torr	Metal Contain: True
Henry's Law: atm-m3/mol	Organic: False
Water Solub: mg/L	Gas: False
Distrib Coef: 6.5E+01 mL/g SSG_KD	Particulate: True
Geo. Mean Sol. 5.2E-01	Radionuclide: False
BIOACCUMULATION	Rad. Element: False
Parameter Value Unit Source	Molecular Weight: 5.869E+01
FOOD CHAIN	Density: 8.9E+00 g/mL @ degrees C
Fresh BCF: 8.0E-01 VER_BCF	OTHER DATA
Salt BCF: 4.7E+02 VER_BCF	Melting Point: 1455 degrees C
ENVIRONMENTAL	Boiling Point: 2730 degrees C
Fresh BCF: 1.1E+02 VER_BCF	Formula: Ni
Salt BCF: 4.7E+02 VER_BCF	CLASS INFORMATION
Log Kow. Water Solub:	Toxicity:
water solub: mg/L	GW Mob:
	Other:
	Uriei.
·	

	•	1996 ASSIGNED FACTO						
81 4	▶ ▶	% E G		w Page Two		*, *	· · · · · · · · · · · · · · · · · · ·	
CAS #:	007440-02-0	1			*			
Chamical Name:	Nickel			· · · · · · · · · · · · · · · · · · ·	 			
Toxicity:	Value 10000	Parameter Value Toxicity: 10000	SOIL EXPOS Paramet Toxicity:	URE PATHW er Value				
L	0.0000	Water Solub: 5.2E-01 Distrib:						
Gas Migration: [0] Drinking Wa		6.5E+01 SURFACE WATER PATHW Human Food Chain	<u>AY</u> Environr	antal				
	<u>ker</u> Value	Parameter Value	<u>Environi</u> Parameter				*	
_	10000	Toxicity. 10000	Fresh Tox:	10				
			Salt Tox:	1000				<u> </u>
Persistence River: 1	.0000	Persistence 1.0000	Persistence River:	1.0000				
L	.0000	Lake: 1.0000	Lake:	1.0000				
<u>.</u>	 :	Bioaccumulation	Bioaccumul		**	•		
		Fresh: 0.5	Fresh:	500.0				
•		Salt: 500.0	Salt:	500.0				
	-							
							•	
		•••						
							-	
				•	-			
	·	•					:	
								•
· :					• .	. v	1	
energy and an appropriate		restured in the four interest seems that the four				: Tart : Tark	عجمته والمدروة مقدما يرد تشيره	

	PAGE TWO	D: 1996 BENCHMARKS			
2 2	▶ , ▶1 , g			. , ,	
<u> </u>	-			•	
CAS #: 007	7440-02-0				
Caral Name: Nic): :kel				
	· · · · · · · · · · · · · · · · · · ·				
	BENC	CHMARKS			
AIR PA	THWAY	. (DSURE PATHWAY		
Parameter	Value Unit	Parameter	Value Unit		
NAAQS/NESHAPS:	ug/m3	Cancer Risk:	mg/kg		
Cancer Risk:	mg/m3	Non Cancer Risk:	1.6E+03 mg/kg		
Non Cancer Risk:	mg/m3		1.02700	:	
Tron Bancor mak.		BAI	DIONUCLIDE		
GROUND WAT	ER PATHWAY	Parameter	Value Unit		n de la companya de La companya de la co
Parameter	Value Unit	MCL:	pCi/L		
MCL/MCLG:	mg/L	UMTRCA:			en en general de la companya de la La companya de la co
Cancer Risk:	mg/L		pCi/kg		
Non Cancer Risk:	<u></u> !	CANCER RISK	, ,		
INUTI Caricel hisk.	7.3E-01 mg/L	.Air:	pCi/m3		
		DW:	pCi/L		
		FC:	pCi/kg		
		Soil Ing:	pCi/kg		
		Soil Gam:	pCi/kg		
	SURFACE W	ATER PATHWAY		e e r ar e	
<u>Drinl</u>	king Water	<u>Envi</u>	<u>ronmental</u>		e de la companya del companya de la companya del companya de la co
ameter	Value Unit	Parameter	Value Unit		
MCLG:	mg/L	ACUTE Fresh AWQC:	1.6E+02 ug/L		
Cancer Risk;	mg/L		1.6E+02 ug/L		
Non Cancer Risk:	7.3E-01 mg/L	Salt AWQC: Fresh AALAC:	1.6E+02 ug/L		
			<u></u>		
<u>Human</u>	Food Chain	Salt AALAC:	1.6E+02 ug/L	•	
Parameter	Value Unit	CHRONIC Fresh AWQC:	1.6E+02 ug/L		
FDAAL:	ppm	Salt AWQC:	1.6E+02 ug/L		
Cancer Risk:	mg/kg	Fresh AALAC:	1.6E+02 ug/L		
Non Cancer Risk:	2.7E+01 mg/kg	the same of the sa	1.6E+02 ug/L		to called a large
	 (Salt AALAC:	[1.0E +UZ UQ/ E		

Site Inspection Sampling Plan Chrome Wheel Concepts 4041 Koppers Court

Conley, DeKalb County, Georgia EPA ID GAR000012658

May 2, 2002

Georgia Environmental Protection Division Hazardous Waste Management Branch

Prepared By:

Reviewed By:

David Brownlee Environmental Engineer

Jane Hendricks Unit Coordinator

TABLE OF CONTENTS

<u>SECT</u>	<u>ION N</u>	<u>UMBER</u> <u>PAGE</u>	1
1.	INTRO	DDUCTION	ĺ
2.	SITE	DESCRIPTION	Í
	2.1 2.2 2.3 2.4	Location	l l
3.	COLL	ECTION OF NON-SAMPLING DATA	1
4.	SAMF	PLING ACTIVITIES	1
	4.1 4.2 4.3 4.4 4.5 4.6	Source Sampling Groundwater Sampling Surface Water Sampling Good/Sediment Sampling Guality Assurance/Quality Control Procedures Field Activities	5 5 5 7
5.	INVE	STIGATION DERIVED WASTES PLAN	3
6.	PROJI	ECT MANAGEMENT	3
	6.1 6.2	Field Equipment/Health and Safety	
REFE	RENCE	S9)
LIST	OF TAE	BLE AND FIGURES:	
Table Table Figure Figure Figure	2: e 1: e 2:	Surface Water Sampling Locations. 6 Soil/Sediment Sampling Locations 7 Site Location 8 Site Map 8 Site Map and Proposed Sampling Locations 8	7 2 3
APPE	NDICE	S:	
Apper	ndix A: ndix B: ndix C:	Chemical List Site Health and Safety Plan Lab Analysis	

1. INTRODUCTION

Under authority of the Comprehensive Environmental Response, Compensation and Liability Act of 1980 (CERCLA) and the Superfund Amendments and Reauthorization Act of 1986 (SARA), the Environmental Protection Division (EPD), Hazardous Waste Management Branch will conduct a site inspection (SI) at the Chrome Wheel Concepts facility (CWC) at 4041 Koppers Court in Conley, DeKalb County, Georgia. The objectives of the SI are to collect analytical data to verify and identify hazardous substances at the site and investigate whether human health and/or the environment has been impacted by the release of these substances in the environment. The scope of the investigation will include collecting media samples to investigate migration of hazardous substances from the site.

2. SITE DESCRIPTION

2.1 Location

The CWC site is located at 4041 Koppers Court in Conley, DeKalb County, Georgia. Previous reports identified the area of the facility as one acre (Ref. 1). The geographical coordinates are 84° 19' 25" west longitude and 33° 39' 45" north latitude as shown on the United States Geologic Survey (U.S.G.S.) Southeast Atlanta, Georgia 7.5 Minute Topographic Quadrangle Map (Figure 1).

CWC is bordered on the east by Koppers Court, which runs north and south. Interstate 675 forms the western boundary; an industrial facility, Iron Peddlers, forms the southern boundary; and a wooded lot forms the northern boundary. The site layout is depicted in Figure 2.

2.2 Site Description

Terek Green is the former operator of the Chrome Wheel Concepts facility. He was purchasing the property from George Tippen. Mr. Green defaulted in payments to Mr. Tippen and the property is in foreclosure. The facility performed decorative chrome plating on wheel accessories.

CWC used chromic acid baths for electroplating as well as nickel and copper baths for undercoating. In addition, alkaline and acid baths are used for preparing the surface and a cyanide bath was used for prepping heavy deposits of metals.

2.3 Operational History and Waste Characteristics

CWC ceased operations around the first quarter of 1999. However, on May 5, 1999, workers at a neighboring property noticed an unusual color in water running through a culvert at the rear of the property. The workers contacted the Georgia Emergency Response Program (ERP) after discovering the discolored water emanated from the CWC

facility. ERP in turn notified USEPA Region 4 Emergency Response and Removal Branch for assistance in preventing the immediate threat of continuing migration of the contaminants to the surface water bodies. The response activities included sampling and removal actions. Samples were collected of the waste found inside and outside of the building, of the soil, of the sediment, and of the surface water. The contaminants of concern are antimony, arsenic, chromium, copper, lead, mercury, nickel, cyanide and pH of the solutions.

2.4 Regional Aquifers

The site lies within the Piedmont/Blue Ridge Province. Groundwater in this area occurs mainly in the saturated regolith and in discontinuities in the underlying rocks, such as joints, fractures, foliation, and weathered zones. Because the regolith and bedrock comprise a single flow system, the uppermost aquifer is the only aquifer underlying the site. Groundwater is typically encountered between 10 and 600 feet below ground surface and is usually under water table conditions. (Ref. 1)

Municipal water is available to the majority of the Conley area residents and is provided by surface water. Private residential wells may supply some older homes that have chosen not to connect to municipal water. The nearest private well is over a half mile from the site. (Ref. 1)

3. COLLECTION OF NON-SAMPLING DATA

Non-sampling data collection will include verifying environmental/site information as well as obtaining new information. A site visit, conducted on May 2, 2002, verified current site conditions. (Ref. 2) Additional data will be gathered as necessary.

4. SAMPLING ACTIVITIES

The objectives of the SI are to collect analytical data to verify and identify hazardous substances at the site and investigate whether human health and/or the environment has been impacted by the release of these substances in the environment. The proposed sampling plan calls for soil, sediment, and surface water sampling.

Due to the fact that a specific release was identified with a list of chemicals of concern, the following constituents will be analyzed: antimony, arsenic, chromium, copper, lead, mercury, nickel, cyanide and pH. The pH level for soil and sediment samples will be measured at the EPD Laboratory. Proposed sample locations are shown on Figure 3.

4.1 Source Sampling

Source sampling will be conducted through soil/sediment sampling activities in and around the suspected areas of contamination at the site.

4.2 Groundwater Sampling

A pre-evaluation of the groundwater pathway was conducted to establish the sampling plan. Using worst case assumptions (i.e., an observed release) and the target data contained in the Preliminary Assessment, the groundwater pathway will be of minimal concern based on the absence of primary targets (actual contamination targets) and secondary targets over a half mile from the site. In addition, the fact that the release was a singular event with the source removed before reaching groundwater, it is unlikely that a groundwater release even occurred during the spill.

4.3 Surface Water Sampling

Based on the previous analytical data contained in the Preliminary Assessment and nearby wetlands, the surface water pathway is a major concern. Five samples are proposed along the surrounding ditches and outfall areas. Field conditions (presence of water) may alter the number and/or locations of samples taken. A brief description of each location is provided in Table 1 below.

Table 1
Surface Water Sampling Locations

Sample Number	Description of Location
SW-1	Background sample upgradient from the Chrome Wheel Concept facility parallel to I-675.
SW-2	Ditch downgradient from CWC at junction before surface water runs under I-675.
SW-3	Ditch at other side of underground drainage conveyance on western side of I-675.
SW-4	Ditch on the south side of Koppers Road and west of I-675 farther downgradient from SW-3.
SW-5	Ditch approximately 100 feet west from SW-4 and parallel to Koppers Road.
SW-Dup	A to be determined duplicate of one of the above samples.

4.4 Soil/Sediment Sampling

Several soil/sediment samples are proposed at the same locations proposed for surface water. Field conditions may alter the number and/or locations of samples taken. A background soil/sediment sample is proposed for this site. The background sample will be collected from a drainage ditch upgradient of the site. A brief description of each location is provided in following table.

Table 2 Soil/Sediment Sampling Locations

Sample Number	Description of Location
SD-1	Background sample upgradient from the Chrome Wheel Concept facility parallel to I-675.
SD-2	Ditch downgradient from CWC at junction before surface water runs under I-675.
SD-3	Ditch at other side of underground drainage conveyance on western side of I-675
SD-4	Ditch on the south side of Koppers Road and west of I-675 farther downgradient from SD-3.
SD-5	Ditch approximately 100 feet west from SW-4 and parallel to Koppers Road.
SD-Dup	A to be determined duplicate of one of the above samples.

4.5 Quality Assurance/Quality Control Procedures (QA/QC)

Unless disposable equipment is used, all sampling equipment will be decontaminated between sample locations. New disposable latex gloves will be worn for each sampling location. All sample collection, preservation, and chain of custody procedures utilized during sampling activities will be in accordance with the standard operation guidelines specified in the U.S. EPA Environmental Compliance Branch Region IV EISOPQAM Manual (Ref. 3). One duplicate is planned for each medium. A rinsate sample will be collected if a rinsate is generated. All samples will be stored in coolers on ice until they reach the laboratory. The project manager will maintain chain of custody until samples are delivered to the GA EPD Laboratory located in Atlanta, Georgia.

4.6 Field Activities

The project manager and assigned team members that will make up the sampling team (1-3 individuals) are tentatively scheduled to travel to the site the week of May 6, 2002. Fieldwork will begin with a site reconnaissance the morning of arrival to verify that planned sample locations are appropriate and accessible. During the reconnaissance, a drive-by survey will verify the locations of wetlands and the closest residents. Sampling will begin after the reconnaissance has verified adequacy of sampling plan locations and necessary modifications have been made. Proposed sample locations are shown on Figure 3. Sampling plans may be modified in the field if conditions dictate. Appropriate sample containers, per U.S. EPA guidance, will be utilized. After collecting all samples, they will be prepared and packaged for proper preservation until delivery to the EPD Laboratory.

The Georgia EPD Laboratory will provide containers with appropriate preservatives for the sampling trip. Coolers, zip-loc sampling bags, trash bags, disposable gloves, paper towels, labels, and a permanent pen will be secured from HSRP office. Sterile stainless steel spoons and scoopers will be picked up from the Hazardous Waste Management Branch (HWMB).

5. INVESTIGATION-DERIVED WASTES PLAN

Investigation-derived wastes include personal protective equipment, disposable sampling equipment, and soil/sediment not collected as a sample. All disposable personal protective and sampling equipment will be double-bagged and taken to the EPD Laboratory prior to disposal. Sediments and surface water, not collected as samples, will be returned to the surface water body. All wastes will be disposed of in accordance with applicable state and federal regulations.

6. PROJECT MANAGEMENT

The project manager for the SI, David Brownlee, will schedule field activities and personnel requirements, verify site access, and direct all activities associated with the investigation. The project manager also will document and manage all collected samples.

6.1 Field Equipment/Health and Safety

Ambient air safety monitoring equipment will not be necessary. Environmental media sampling activities will be conducted in level D personal protection equipment including disposable gloves, work boots, and regular cotton work clothes. The Site Health and Safety Plan is included as Appendix B. Field personnel will be briefed on the health and safety issues.

6.2 Projected Schedule

The SI fieldwork will begin early May 2002. Non-sampling data collection is pending. When the fieldwork and data collection is completed, preparation of the draft SI report will begin. Analytical results will be validated by the end of June 2002. The final SI report and HRS score will be completed by the end of July 2002.

REFERENCES

- 1. Georgia Environmental Protection Division, *Preliminary Assessment Report*, Chrome Wheel Concepts, Conley, DeKalb County, Georgia, EPA ID GAR000012658, September 27, 2001.
- 2. Georgia Environmental Protection Division, Pre-Sampling Site Visit, Conley, DeKalb County, Georgia, May 2, 2002.
- 3. U.S. Environmental Protection Agency, Region IV, Environmental Investigations Standard Operating Procedures and Quality Assurance Manual (EISOPQAM), November 2001.

HAZARDOUS WASTE MANAGEMENT BRANCH SITE SAFETY AND WORK PLAN

SITE DESCRIPTION

DATE:

May 9, 2002

LOCATION:

Chrome Wheels Concept

4041 Koppers Court

Conley, DeKalb County, Georgia

HAZARDS:

Electro-plating waste

AREA AFFECTED: Drainage ditch area surrounding the Chrome Wheel Concepts facility and the

downgradient surface water pathway.

ADDITIONAL INFORMATION:

CWC electroplated chrome and other metals onto wheel accessories. Besides heavy metals, the other two constituents of concern are cyanide and pH.

ENTRY OBJECTIVES:

(Actions, tasks to be accomplished, etc.)

Collection of sediment and surface water samples for the Site Investigation (SI).

ONSITE ORGANIZATION/COORDINATION

Team Leader

David Brownlee

Field Team Members

Justin Butler (tentative)

Justine Harrison (tentative)

ONSITE CONTROL

David Brownlee has been designated to coordinate access control and security on site.

HAZARD EVALUATION

Cubatanaga Invaluad

Hazards known or suspected to be on site. The primary hazards of each are identified.

Substances involved	Concentrations	Primary Hazard (i.e., toxic, innaiation, etc)
Acids	Unknown	Corrosive, possibly toxic by inhalation, reacts violently with water
Cyanide	Unknown	Toxic by inhalation, ingestion
Metals	Unknown	Toxic by ingestion or inhalation of dust

Drimon, Hazard (i.e. taxis inhalation ata)

Additional hazards found onsite include: Uneven terrain.

S:\RDRIVE\DAVIDB\PA&SI\Koppers Court\Health & Safety Plan.doc

Appendix B

PERSONAL PROTECTIVE EQUIPMENT

Based on the evaluation of potential hazards, the following levels of personal protection have been designated for the applicable work areas or tasks:

Level D personal protection equipment including steel-toe boots, disposable latex gloves, and regular cotton work clothes shall be worn during the site visit. Disposable latex gloves must be changed between sample locations.

SITE SAFETY AND HEALTH PLAN

Site Safety Officer

David Brownlee is the designated Site Safety Officer.

Emergency Medical Care

Grady Memorial Hospital is located within 7 miles of this location. A map of the route to this medical facility is available and attached to this plan.

First aid equipment if available onsite at the following locations:

<u>Equipment</u> <u>Location</u>

(i.e. first-aid kit, emergency eye wash, shower)

First-aid Kit Vehicle

List of Emergency Phone Numbers: 911 shall be contacted for medical emergencies.

Personal Monitoring

The following personal monitoring will be in effect onsite:

Personal exposure sampling: Personal Exposure sampling will not be conducted.

Medical monitoring: No medical monitoring is to be performed during the site visit.

All site personnel have read the above plan and are familiar with its provision.					
	Name	Signature			
Site Safety Officer					
Other Site Personnel					
Other Site Personnel					
Other Site Personnel					
<u>NOTES</u>					

Environmental Protection Division EPD Laboratory, 455-14th Street, Atlanta GA 30318 David Jones, Laboratory Director Ray Terhune, Quality Assurance Manager

A.3.22 EPA Method 9045B - pH in Soil

A.3.22.1 Scope and Application

This method is applicable to sediment samples. The pH of a sample is determined electrometrically using a glass electrode in conjunction with a reference electrode.

A.3.22.2 Calibration

The pH meter is calibrated daily with three standard buffers at pH 7.0, 4.0 and 10.0 which must read within +/- 0.10 pH units of its given value. An CCC is analyzed every 10 samples. The calibration verification standard must meet control criteria in order for bracketed data to be acceptable.

A.3.22.3 Calculation

The pH meter reads directly in pH units. pH is reported to the nearest 0.1 unit.

Table A.3.22.1 RLs for Method EPA 9045B

		Matr	ix (soil)
Parameter/Method	Analyte	RL	Unit
EPA 9045B	Sediment pH	1	pH units

Table A.3.22.2 Acceptance Criteria for Method EPA 9045B

Method	Analyte	Accuracy Water (%R)	Precision Water (pH Units)
EPA 9045B	Sediment pH	NA	0.5

Table A.3.22.3 Summary of Calibration and QC Procedures for Method EPA 9045B

Method	Applicable Parameter	QC Check	Minimum Frequency	Acceptance criteria	Corrective Action	Flagging Criteria
EPA 9045B	Sediment pH	Initial calibration verification	Prior to every batch	pH value must be within +/- 10% of expected value	Correct problem then repeat initial calibration verification	

Georgia Department of Natural Resources
Environmental Protection Division
EPD Laboratory, 455 14th Street, Atlanta GA 30318
David Jones, Laboratory Director
Ray Terhune, Quality Assurance Manager

Table A.3.22.3 Summary of Calibration and QC Procedures for Method **EPA 9045B**

Method	Applicable Parameter	QC Check	Minimum Frequency	Acceptance criteria	Corrective Action	Flagging Criteria
EPA 9045B	Sediment pH	Initial demonstration: Demonstrate ability to generate acceptable accuracy and precision using four analysis of QC check sample	Once per analyst	QC Acceptance Criteria Table and Initial demonstration SOP	Recalculate results: locate and fix problem with system and then rerun demonstration for those analytes that did not meet criteria.	
		Sample duplicate	Once per batch	pH value must be within 0.5 of expected value	Evaluate out of control event, reanalyze data	
		Continuing Calibration Check (CCC)	After every 10 samples	Concentration within 0.1 pH unit of expected value	Correct problem and reanalyze all samples associated with out of control CCC.	

Environmental Protection Division

EPD Laboratory, 455 14th Street, Atlanta GA 30318 David Jones, Laboratory Director Ray Terhune, Quality Assurance Manager

A.3.10 EPA Method 335.4 - Total Cyanide by Semi-Automated Colorimetry

A.3.10.1 Scope and Application

This method is applicable to the determination of cyanide in drinking and surface waters, domestic and industrial wastes. The cyanide as hydrocyanic acid(HCN), is released from cyanide complexes by means of distillation. Cyanides are converted to cyanogen chloride by reactions with chloramine-T, which subsequently reacts with pyridine and barbituric acid to give a red-colored complex. The color is read at 570 nm. The method is modified to use the MIDI-VAP Model MCV-103 midi-cyanide distillation system and the Traacs 800 auto analyzer.

Water samples for cyanide analysis are collected in a half gallon plastic narrow mouth bottles. Samples are preserved with sufficient NaOH to raise the pH above 12. Sample bottles must be cooled to 4°C after sample collection. Samples must be distilled and analyzed within 14 days.

A.3.10.2 Calibration Verification

The Traacs 800 is calibrated daily. Seven standards are used to construct the calibration curve; 0 mg/L CN, 0.025 mg/L /CN, 0.050 mg/L CN, 0.10 mg/L CN, 0.20 mg/L CN, 0.30 mg/L CN, and 0.50 mg/L CN. An ICV and ICB are run daily to check the calibration curve. An alternate source standard, where available, is used to verify initial calibration of the measurement system. The ICV value must be within $\pm 10\%$ of true value. The ICB value must be < 0.025 mg/L. Minimum correlation coefficient is 0.995 using linear regression. When the acceptance criteria for the continuing calibration verification are exceeded high, i.e., high bias, and there are associated samples that are non-detects, then those non-detects may be reported. When the acceptance criteria for the continuing calibration verification are exceeded low, i.e., low bias, those sample results may be reported if they exceed a maximum regulatory limit/decision level. Otherwise, the samples affected by the unacceptable calibration verification shall be reanalyzed after a new calibration curve has been established, evaluated and accepted.

A.3.10.3 Calculation

A standard curve is prepared by plotting the absorbance value of standards versus the corresponding cyanide concentration. The concentration value of the sample is obtained directly from the standard curve.

Table A.3.10.1 RLs for Method EPA 335.4

		Matrix (a	queous)
Parameter/Method	Analyte	RL	Unit
EPA 335.2	Total Cyanide	0.025	mg/L

Environmental Protection Division EPD Laboratory, 455 14th Street, Atlanta GA 30318 David Jones, Laboratory Director Ray Terhune, Quality Assurance Manager

Table A.3.10.2 Acceptance Criteria for Method EPA 335.4

Method	Analyte	Accuracy Water (%R)	Precision Water (RPD)
EPA 335.2	Total Cyanide	85-115	30

Table A.3.10.3 Summary of Calibration and QC Procedures for Method EPA 335.4

Method	Applicable	QC Check	Minimum		Corrective	Floggina
Method	Applicable Parameter	QC Check	Minimum Frequency	Acceptance criteria	Action	Flagging Criteria
EPA 335.2	Total Cyanide	Seven point calibration curve	Initial calibration verification once per batch	Correlation coefficient ≧ 0.995 linear regression	Correct problem then repeat initial calibration	
		Second source calibration verification	Once per batch	Cyanide concentration within ±10% of expected value	Correct problem then repeat initial calibration	
		Initial Demonstration: Demonstrate ability to generate acceptable accuracy and precision using four analysis of a QC check sample	Once per analyst	QC Acceptance Criteria Table and Initial Demonstration SOP	Recalculate results: locate and fix problem with system and then rerun demonstration for those analytes that did not meet criteria	
		Method Blank	One per batch	Total Cyanide value must be < 0.025 mg/L	Correct problem then analyze method blank and all samples processed with the contaminated blank	If unable to re-analyze, flag with a "B"
		Laboratory Control Sample (LCS/LCSD)	One LCS/LCSD per analytical batch	QC Acceptance Criteria Table	Correct problem then reanalyze the LCS/LCSD and all samples in the affected batch	If unable to re-analyze, flag with a
		MDL Study	Once per year	Detection limits established shall be < the RL's in table	none	
		Matrix Spike (MS/MSD)	One MS/MSD per analytical batch	QC Acceptance Criteria Table	Evaluate out of control event, reanalyze or flag data	:
		Continuing Calibration Check (CCC)	After every 10 samples	Concentration within ±10 % of expected value	Correct problem then reanalyze all samples associated with out of control CCC.	
į		Continuing Calibration Blank (CCB)	After every 10 samples	CN concentration must be <0.025 mg/l	Correct problem then reanalyze all samples associated with out of control CCB.	

Environmental Protection Division EPD Laboratory, 455 14th Street, Atlanta GA 30318 David Jones, Laboratory Director Ray Terhune, Quality Assurance Manager

A.3.21 EPA Method 9010B - Total Cyanide in Waste and Sediments

A.3.21.1 Scope and Application

This method is a reflux-distillation procedure used to extract soluble cyanide salts and many insoluble cyanide complexes from wastes and leachates. It is based on the decomposition of nearly all cyanides by a reflux distillation procedure using a strong acid and a magnesium catalyst. Cyanide, in the form of hydrocyanic acid (HCN) is purged from the sample and captured into an alkaline scrubber solution. Method 9010 maybe used as a reflux-distillation procedure for both total cyanide and cyanide amenable to chlorination.

A.3.21.2 Calibration Verification

The Traacs 800 is calibrated daily. Seven standards are used to construct the calibration curve; 0.00 mg/L CN, 0.025 mg/L /CN, 0.050 mg/L CN, 0.10 mg/L CN, 0.20 mg/L CN, 0.30 mg/L CN, and 0.50 mg/L CN. An ICV and ICB are run daily to check the calibration curve. The ICV value must be within 10% of true value. The ICB value must be < 0.025 mg/L. An alternate source standard, where available, is used to verify initial calibration of the measurement system. Minimum correlation coefficient is 0.995 using linear regression.

A.3.21.3 Calculation

A standard curve is prepared by plotting the absorbance value of standards versus the corresponding cyanide concentration. The concentration of cyanide in the sample digestates is determined by plotting sample absorbance's against the standard curve. Calculation of final result is accomplished using the following equation:

CN mg/kg =
$$\frac{(X)(Y)}{(kg)}$$

X = CN concentration in NaOH trapping solution

Y = Volume (in liters) of the trapping solution

kg = weight (in kg) of the sample (wet weight)

%S = percent solids in sediment, as a decimal fraction

Table A.3.21.1 RLs for Method SW486 9010B

		Matrix (Waste	
Parameter/Method	Analyte	RL	Unit
SW486 9010B	Total Cyanide in Waste and Sediments	6.25	mg/kg wet

Environmental Protection Division EPD Laboratory, 455 14th Street, Atlanta GA 30318 David Jones, Laboratory Director Ray Terhune, Quality Assurance Manager

Table A.3.21.2 Acceptance Criteria for Method SW486 9010B

Method	Analyte	Accuracy Waste (%R)	Precision Waste (RPD)
SW486 9010B	Total Cyanide in Waste and Sediments	85-115	30

Table A.3.21.3 Summary of Calibration and QC Procedures for Method SW486 9010B

Method	Applicable Parameter	QC Check	Minimum Frequency	Acceptance criteria	Corrective Action	Flagging Criteria
SW486 9010B	Total Cyanide in Waste and Sediments	Seven point calibration curve	Initial calibration verification once per batch	Correlation coefficient ≥ 0.995 linear regression	Correct problem then repeat initial calibration	
:		Second source calibration verification	Once per batch	Cyanide concentration within, 10% of expected value	Correct problem then repeat initial calibration	
		Initial Demonstration: Demonstrate ability to generate acceptable accuracy and precision using four analysis of a QC check sample	Once per analyst	QC Acceptance Criteria Table and Initial Demonstration SOP	Recalculate results: locate and fix problem with system and then rerun demonstration for those analytes that did not meet criteria	
		Method Blank	One per batch	Total Cyanide value must be < RL in table	Correct problem then analyze method blank and all samples processed with the contaminated blank	If unable to re-analyze, flag with a "B"
		Laboratory Control Sample (LCS/LCSD) spiked with Ottawa sand or glass beads	One LCS/LCSD per analytical batch	QC Acceptance Criteria Table	Correct problem then reanalyze the LCS/LCSD and all samples in the affected batch	If unable to re-analyze, flag with a
		Matrix Spike (MS/MSD)	One MS/MSD per analytical batch	QC Acceptance Criteria Table	Evaluate out of control event, reanalyze or flag data	
		Continuing Calibration Check (CCC)	After every 10 samples	Concentration within 10 % of expected value	Correct problem and reanalyze all samples associated with out of control CCC.	
		Continuing Calibration Blank (CCB)	After every 10 samples	CN concentration must be < RL in table	Correct problem and reanalyze all samples associated with out of control CCB.	

Environmental Protection Division EPD Laboratory, 455 14th Street, Atlanta GA 30318 David Jones, Laboratory Director Ray Terhune, Quality Assurance Manager

A.2.7 EPA Method 6020 – Metals in Water by ICP/MS

A.2.7.1 Scope and Application

This method covers the determination of metals in drinking, surface, and saline waters, industrial wastes and soils by ICP mass spectroscopy. An aliquot of the sample is accurately measured and refluxed with Hydrochloric and Nitric acids to solubilize analytes. The sample is allowed to settle overnight prior to analysis. For direct analysis of drinking water samples, Nitric acid is added and the sample is allowed to sit overnight prior to analysis.

Water samples and liquid waste samples for metal analysis are collected in a 500 ml narrow mouth plastic (HDPE) bottle. Samples are preserved with sufficient HNO3 to lower the pH below 2. One to two bottles are required for each sample. Mercury analysis must be performed within 28 days all other metals require analysis within 180 days.

A.2.7.2 ICP Calibration and Calculations

A.2.7.2.1 Calibration Curve

The ICP is calibrated daily. A multipoint calibration curve is used. The concentration of the calibration standards varies according to the analytical requirements of the project being worked on. However, all calibration curves contain a blank and the curve type is linear through zero. Minimum acceptable correlation coefficient is 0.995 using linear regression. An ICV and ICB are analyzed immediately after the calibration standards. The ICV value must be within +/-5% of true value. The ICB value must be less than the analyte's reporting limit. A CCC and a CCB are analyzed after every ten samples. The initial CCC value must be within +/- 5% of true value, subsequent CCC values must be within +/-10% of true value. All CCC values must be less than the analyte's reporting limit.

A.2.7.2.2 Calculation

A standard curve is obtained by plotting the absorbance of standards against analyte concentration. The sample concentrations are computed directly from the standard curve and are reported as either ug/L for aqueous samples or mg/Kg for solid or waste samples.

Georgia Department of Natural Resources
Environmental Protection Division
EPD Laboratory, 455 14th Street, Atlanta GA 30318
David Jones, Laboratory Director
Ray Terhune, Quality Assurance Manager

Table A.2.7 RLs for Method 6020						
		Matrix (Water)		ľ	trix oil)	
Parameter/Method	Analyte	RL	Unit	RL	Unit	
Metals by	Antimony	5.0	ug/L	0.5	mg/Kg	
Inductively Coupled	Arsenic	5.0	ug/L	0.5	mg/Kg	
Atomic Emission	Barium	1.0	ug/L	0.1	mg/Kg	
Plasma Mass	Beryllium	1.0	ug/L	0.1	mg/Kg	
Spectroscopy 6020	Cadmium	1.0	ug/L	0.1	mg/Kg	
	Chromium	5.0	ug/L	0.5	mg/Kg	
	Cobalt	5.0	ug/L	0.5	mg/Kg	
	Copper	5.0	ug/L	0.5	mg/Kg	
	Lead	1.0	ug/L	0.1	mg/Kg	
	Nickel	5.0	ug/L	0.5	mg/Kg	
	Selenium	5.0	ug/L	0.5	mg/Kg	
	Silver	5.0	ug/L	0.1	mg/Kg	
	Thallium	1.0	ug/L	0.1	mg/Kg	
	Vanadium	1.0	ug/L	0.1	mg/Kg	
	Zinc	10.0	ug/L	1.0	mg/Kg	

Environmental Protection Division EPD Laboratory, 455-14th Street, Atlanta GA 30318 David Jones, Laboratory Director Ray Terhune, Quality Assurance Manager

A.2.8 EPA Method 7470 - Mercury by cold vapor AA

A.2.8.1Scope and Application

This method covers the determination of Mercury in mobility extraction procedures, aqueous wastes and ground water by cold vapor atomic absorption spectroscopy. An aliquot of the sample is accurately measured and transferred to a clean 50 ml centrifuge tube. The sample is then digested in dilute Potassium Permanganate-Potassium Persulfate solutions and oxidized in a hot block. Mercury in the sample is then reduced by Stannous Chloride to elemental Mercury and analyzed by flow injection cold vapor atomic absorption.

Water samples and liquid waste samples for mercury analysis are collected in a 500 ml narrow mouth plastic (HDPE) bottle. Samples are preserved with sufficient HNO3 to lower the pH below 2. One to two bottles are required for each sample. Mercury analysis must be performed within 28 days.

A.2.8.2 Calibration and Calculations

A.2.8.2.1 Calibration Curve

The Mercury analyzer is calibrated daily. A multipoint calibration curve is used. The concentrations of the calibration standards are (in ug/L) for aqueous samples 0.0, 0.2, 0.5, 1.0, 2.0, 3.0, and 6.0. Minimum acceptable correlation coefficient is 0.995 using linear regression. An ICV and ICB are analyzed immediately after the calibration standards. The ICV value must be within +/-10% of true value. The ICB value must be less than the analyte's reporting limit. A CCC and a CCB are analyzed after every ten samples. All CCC values must be within +/- 20% of true value. All CCB values must be less than the analyte's reporting limit.

A.2.8.2.2 Calculation

A standard curve is obtained by plotting the absorbance of standards against analyte concentration. The sample concentrations are computed directly from the standard curve and are reported as ug/L

Table A.2.8.1 RLs for Method 7470A

Parameter/Method	Analyte	Matrix Aqueous	
		RL	Unit
Mercury by Cold Vapor Atomic Absorption Spectrometry	Mercury	0.2	ug/l

Environmental Protection Division EPD Laboratory, 455-14th Street, Atlanta GA 30318 David Jones, Laboratory Director Ray Terhune, Quality Assurance Manager

Table A.2.8.2 Acceptance Criteria for Method 7470A

Method	Analyte	Accuracy Aqueous (%R)	Precision Aqueous (RPD)
Mercury by Cold Vapor Atomic Absorption Spectrometry	Mercury	85-115	≤ 15

Table A.2.8.3 Summary of Calibration and QC Procedures for Method 7470A

	T .		····	· · · · · · · · · · · · · · · · · · ·	Corrective	
Method	Applicable Parameter	QC Check	Minimum Frequency	Acceptance Criteria	Corrective Action	Flagging Criteria
7470A	Mercury	Analyst Initial Demonstration.	Once per analyst	Average of 4 LCS recoveries between 85- 115%. Recovery of unknown sample within established QC limits	Recalculate results, correct problem, then rerun the initial demonstration for those analytes that did not meet criteria.	
		MDL study.	Once every 12 months.	All analyte MDLs must be < reporting limits.	Correct the problem.	
		Analysis of PE sample.	Once every 12 months	All analyte results acceptable per the auditing agency.	Correct the problem	
		Initial Calibration. Minimum of 4 standards.	Daily initial calibration prior to sample analysis.	Correlation coefficient ≥ 0.995	Correct the problem and recalibrate	
		MDL Check	Daily after calibration.	All analyte recoveries between 50-150%.	Correct the problem and recalibrate.	
	i -	IDL Calculation	Daily after calibration.	All analyte IDLs < MDL.	Correct the problem, clean the torch, recalibrate.	
	į	Initial Calibration Verification (ICV)	Daily after calibration.	All analyte recoveries within 10% of true value.	Correct the problem and recalibrate.	
		Continuing Calibration Blank (CCB).	Daily after calibration, after every 10 samples, and at end of analysis sequence.	All analyte concentrations must be below the analyte's reporting limit.	Correct the problem, recalibrate, and reanalyze all samples since the last acceptable CCB.	
		Continuing Calibration Check (CCC).	Daily after calibration, after every 10 samples, and at end of analysis sequence.	All analyte recoveries between 80- 120%	Correct the problem, recalibrate, and reanalyze all samples since the last acceptable CCC.	

Environmental Protection Division EPD Laboratory, 455-14th Street, Atlanta GA 30318 David Jones, Laboratory Director Ray Terhune, Quality Assurance Manager

Table A.2.8.3 Summary of Calibration and QC Procedures for Method 7470A

Method	Applicable Parameter	QC Check	Minimum Frequency	Acceptance Criteria	Corrective Action	Flagging Criteria
7470A	ОА Мегсигу		Once per batch.	All analyte recoveries between 85- 115%.	Correct the problem, redigest, and reanalyze all samples in the batch.	If unable to reanalyze, flag with a "J"
		Laboratory Control Sample Duplicate (LCSD).	Once per batch.	Relative Standard Precision ≤ 15%	Correct the problem, redigest, and reanalyze all samples in the batch.	If unable to reanalyze, flag with a "J"
		Matrix Blank	Önce per batch.	All analyte concentrations must be less than the reporting limit.	Correct the problem, redigest, and reanalyze all samples in the batch.	If unable to reanalyze, flag with a "B"
		Matrix Spike	Every 10 samples.	All analyte recoveries within established QC limits	All samples must be analyzed by method of standard additions.	
		Matrix Spike Duplicate.	Every 10 samples.	Relative Standard Precision < 15%.	None.	

Environmental Protection Division EPD Laboratory, 455 14th Street, Atlanta GA 30318 David Jones, Laboratory Director Ray Terhune, Quality Assurance Manager

A.2.9 EPA Method 7471 - Mercury by Cold Vapor AA Spectroscopy in Solids

A.2.9.1Scope and Application

This method covers the determination of Mercury in soils, sediments, bottom deposits, and sludge-like materials by cold vapor atomic absorption spectroscopy. An aliquot of the sample is accurately measured and transferred to a 50 ml centrifuge tube. The sample is then digested in dilute Potassium Permanganate-aqua regia solutions and oxidized at 95°C. Mercury in the sample is then reduced by Stannous Chloride to elemental Mercury and analyzed by flow injection cold vapor atomic absorption.

Soil and sediment samples for metal analysis are collected in a 500 ml wide mouth plastic (HDPE) bottle. Sample bottles must be cooled to 4°C after sample collection. Samples must be analyzed within 180 days.

A.2.9.2 Calibration and Calculations

A.2.9.2.1 Calibration Curve

The Mercury analyzer is calibrated daily. A multipoint calibration curve is used. The concentrations of the calibration standards are (in mg/Kg): 0.0, 0.0002, 0.0005, 0.001, 0.002, 0.003, and 0.006. Minimum acceptable correlation coefficient is 0.995 using linear regression. An ICV and ICB are analyzed immediately after the calibration standards. The ICV value must be within 10% of the true value. The ICB value must be less than the analyte's reporting limit. An alternate source standard, where available, is used to verify initial calibration of the measurement system. A CCC and a CCB are analyzed after every ten samples. All CCC values must be within 20% of the true value. All CCB values must be less than the analyte's reporting limit.

A.2.9.2.2 Calculation

A standard curve is obtained by plotting the absorbance of standards against analyte concentration. The sample concentrations are computed by multiplying the sample concentration obtained from the calibration curve by the dilution factor and are reported as mg/Kg. The reporting limit for the diluted analyte is also multiplied by the dilution factor.

Table A.2.9.1 RLs for Method 7471A

			latrix olids)
Parameter/Method	Analyte	RL	Unit
Mercury by Cold Vapor Atomic Absorption Spectrometry	Mercury	0.1	mg/Kg

Environmental Protection Division EPD Laboratory, 455-14th Street, Atlanta GA 30318 David Jones, Laboratory Director Ray Terhune, Quality Assurance Manager

Table A.2.9.2 Acceptance Criteria for Method 7471A

Method	Analyte	Accuracy Solids (%R)	Precision Solids (RPD)
Mercury by Cold Vapor Atomic Absorption Spectrometry	Mercury	85-115%	15

Table A.2.9.3 Summary of Calibration and QC Procedures for Methods 7471A

Method	Applicable Parameter	QC Check	Minimum Frequency	Acceptance criteria	Corrective Action	Flagging Criteria
7471 A	Mercury	Analyst Initial Demonstration.	Once per analyst	Average of 4 LCS	Recalculate results, correct problem, then rerun the initial demonstration for those analytes that did not meet criteria.	Criteria
		MDL study.	Once every 12 months.	All analyte MDLs must be < reporting limits.	Correct the problem.	
		Analysis of PE sample.	Once every 12 months	All analyte results acceptable per the auditing agency.	Correct the problem	
		Initial Calibration. Minimum of 4 standards.		Correlation coefficient ≥ 0.995	Correct the problem and recalibrate	
		MDL Check	Daily after calibration.	All analyte recoveries between 50-150%.	Correct the problem and recalibrate.	
		IDL Calculation	Daily after calibration.	All analyte IDLs < MDL.	Correct the problem, clean the torch, recalibrate.	
		Initial Calibration Verification (ICV)	Daily after calibration.	All analyte recoveries within 10% of true value.	Correct the problem and recalibrate.	
		Continuing Calibration Blank (CCB).	Daily after calibration, after every 10 samples, and at end of analysis sequence.	All analyte concentrations must be below the analyte's reporting limit.	Correct the problem, recalibrate, and reanalyze all samples since the last acceptable CCB.	
		Continuing Calibration Check (CCC).	Daily after calibration, after every 10 samples, and at end of analysis sequence.	All analyte recoveries between 80-120%.	Correct the problem, recalibrate, and reanalyze all samples since the last acceptable CCC.	
		Laboratory Control Sample (LCS).	Once per batch.	All analyte recoveries between 85-115%.	Correct the problem, redigest, and reanalyze all samples in the batch.	If unable to re- analyze, flag with
		Laboratory Control Sample Duplicate (LCSD)	Once per batch.	Relative Percent Difference ≤ 15%	Correct the problem, redigest, and reanalyze all samples in the batch.	If unable to re- analyze, flag with "J"
		Matrix Blank		All analyte concentrations must be less than the reporting limit.	Correct the problem, redigest, and reanalyze all samples in the batch.	If unable to re- analyze, flag with "B"

Environmental Protection Division EPD Laboratory, 455 14th Street, Atlanta GA 30318 David Jones, Laboratory Director Ray Terhune, Quality Assurance Manager

Table A.2.9.3 Summary of Calibration and QC Procedures for Methods 7471A

Method	Applicable Parameter	QC Check	Minimum Frequency	Acceptance criteria	Corrective Action	Flagging Criteria
7471A	Mercury	Matrix Spike Every 10 samples.		recoveries within established QC	ecoveries within must be analyzed by the stablished QC method of standard	
		Matrix Spike Duplicate.	Every 10 samples.	Relative Percent Difference< 15%.	None.	

SITE INSPECTION WORKSHEETS

CERCLIS IDENTIFICATION NUMBER
GASFN0406949

		SITE L	OCATION						
SITE NAME: LE	EGAL, COMM	ON, OR DESCRIPTIVE NAME (OF SITE						
Koppers Court	Release (ak	a Chrome Wheel Concepts)							
STREET ADDR	RESS, ROUTE	, OR SPECIFIC LOCATION IDE	ENTIFIER						
4041 Koppers	Court								
CITY			STATE	TE ZIP CODE TELEPHONE					
Conley			GEORGIA		N/A				
•									
	<u> </u>	OWNER/OPERATO	OR IDENTIFIC	ATION					
OWNER		OWNER/OPERATO	OPERATOR						
George Tippen	1		Terek Green						
OWNER ADDR			OPERATOR						
			4041 Koppers Court						
CITY			CITY						
			Conley						
STATE	ZIP CODE	TELEPHONE	STATE	ZIP CODE	TELEPHONE				
	CODE		Georgia		N/A				
		SITE EV	ALUATION	· · · · · · · · · · · · · · · · · ·					
AGENCY/ORG/	ANIZATION		INVESTIGATOR						
Georgia Envi	ronmental F	Protection Division	David Brownlee						
ADDRESS			CONTACT						
205 Martin Lu Tower	ıther King J	r. Dr., SE, Suite 1462 East	Deadre Embrey						
CITY			TELEPHONE						
Atlanta			404/656-28	33					
STATE		ZIP CODE							
Georgia		30334	30334						

GENERAL INFORMATION

Site description and Operational History: Provide a brief description of the site and its operational history. State the site name, owner, operator, type of facility and operations, size of property, active or inactive status, and years of waste generation. Summarize waste treatment, storage, or disposal activities that have or may have occurred at the site; note whether these activities are documented or alleged. Identify all source types and prior spills, floods, or fires. Summarize highlights of the PA and other investigations. Cite references.

Location

Chrome Wheel Concepts is located at 4041 Koppers Court, within the city limits of Conley, Georgia. The geographic coordinates are 33°39'45"N latitude and 84°19'25"W longitude, as located on the U.S. Geological Survey 7.5 minute series topographic map quadrangle, Georgia.

Site Description, Operational History and Waste Characteristics

The site is owned by Mr. George Tippen and is approximately one acre in size. The former operator of the site was Mr. Terek Green. Chrome Wheel Concepts is no longer in business. The site is currently leased to another tenant that does not generate any hazardous waste.

S	ource l	Descrip	tion:	Include	descrip	ption c	f contai	nment p	oer p	athway	for	ground	water	(see	HRS	Table	3-2),	surfa	ice water	r (see
F	IRS Tal	ble 4-2)	, and	air (see l	HRS T	ables (6-3 and	6-9). ·	•	•		Ü		•						

Sources:

Electro-plating solutions containing heavy metals and cyanide that were deliberately discharged into the drainage ditch at the back of the facility.

Hazardous Waste Quantity (HWQ) Calculation: SI Tables 1 and 2 (See HRS Tables 2-5, 2-6, and 5-2.

Single Source:

Electro-plating solutions

Using the hazardous constituent quantity in Column 3 of SI Table 1 fo single source sites, the data is incomplete. That results in a default HWQ value of 10 according to SI Table 2.

HWQ= 10

SI TABLE 1: HAZARDOUS WASTE QUANTITY (HWQ) SCORES FOR SINGLE SOURCE SITES AND FORMULAS FOR MULTIPLE SOURCE SITES

			le Source Sites	
(Column 1)	(Calumn 2)	(Column 3)	(Column 4)	
,		,	,	
TIER	Source Type	HWQ = 10	HWQ = 100	
A Hazardous Constituent Quantity	N/A	Hazarcous Constituent Quantity data are complete HWQ = 10 if Hazardous Constituent Quantity data are not complete	>100 to 10,000 fbs	
B Hazardous Wastestream Quantity	N/A	≤ 500,000 lbs	>500,000 to 50 million lbs	
	Lanofill	≤ 6.75 million ft ³ ≤ 250,000 yd ³	>6.75 million to 675 million ft ³ >250,000 to 25 million ya ³	
	Surface impoundment	≤6,750 ft ³ ≤250 yd ³	>6,750 to 675,000 ft ³ >250 to 25,000 yd ³	
	Drums	≤1,000 drums	>1,000 to 100,000 drums	
C Volume	Tanks and non-drum containers	≤50,000 gailons	>50,000 to 5 million gallons	
	Contaminated soil	≤6.75 million ft ³ ≤250,000 yd ³	>6.75 million to 675 million tt ³ >250,000 to 25 million ya ³	
	211 0	≤6,750 ft ³ ≤250 ya ³	>6,750 to 675,000 ft ³ >250 to 25,300 ya ³	
	Other	≤6,750 ft³ ≤250 yd³	>6,750 to 675,000 ft ³ >250 to 25,000 yd ³	
	Lanotill	≤340,000 ft² ≤7.8 acres	>340,000 to 34 million it ² >7.8 to 780 acres	
D	Surface impoundment	≤1,300 ft² ≤0.029 acres	>1,300 to 130,000 ft ² >0.029 to 2.9 acres	
Area	Contaminated soil	≤3.4 million ft² ≤78 acres	> 3.4 million to 340 million ft ² > 78 to 7,300 acres	
	Pile	≤1,300 ft ² ≤0.029 acres	>1,300 to 130,000 ft ² >0.029 to 2.9 acres	
	Land treatment	≤27,000 ft²- ≤0.62 acres	>27,000 to 2.7 million ft ² >0.52 to 62 acres	

TABLE 1 (CONTINUED)

Single Source (assigned HWQ	Sites	Multiple Source Sites		
(Column 5) HWQ = 10,000	(Column 6) HWQ = 1,000,000	(Column 7) Divisors for Assigning Source WQ Values	(Column 2) Source Type	(Column 1) TIER
>10,000 to 1 million lbs	> 1 million ibs	lbs + 1	N/A	A Hazardous Constituent Quantity
>50 million to 5 billion !bs	> 5 billion lbs	lbs + 5,000	N/A	B Hazardous Wastestream Quantity
>675 million to 67.5 billion it ³ >25 million to 2.5 billion yd ³	> 67.5 billion ft ³ > 2.5 billion yd ³	ft ³ + 67,500 yd ³ + 2,500	Landfill	
>675,000 to 67.5 million ft ³ >25,000 to 2.5 million yd ³	> 67.5 million ft ³ > 2.5 million ya ³	ft ³ + 67.5 yd ³ + 2.5	Surface Impoundment	
>100,000 to 10 million drums	> 10 million drums	drums + 10	Drums	
>5 million to 500 million gallons	> 500 million gailons	gailens + 500	Tanks and non-drum	C Valum •
>675 million to 67.5 billion ft ³ >25 million to 2.5 billion ya ³	> 67.5 billion ft ³ > 2.5 billion ya ³	tt ³ + 67,500 yd ³ + 2,500	containers Contaminated Soil	
>675,000 to 67.5 million ft ³ >25,000 to 2.5 million yd ³	> 67.5 million ft ³ > 2.5 million ya ³	ft ³ + 67.5 yd ³ + 2.5	Pile	
>675,000 to 67.5 million ft ³ >25,000 to 2.5 million va ³	> 67.5 million ft ³ > 2.5 million va ³	ft ³ + 67.5 yd ³ + 2.5	Other	
>34 million to 3.4 billion ft ² >780 to 78,000 acres	> 3.4 billion ft ² >78,000 acres	ft ² + 3,400 acres + 0.078	Landfill	
>130,000 to 13 million ft ² >2.9 to 290 acres	> 13 million ft ² > 290 acres	ft ² + 13 acres + 0.00029	Surface Impoundment	D
> 340 million to 34 billion ft ² > 7,300 to 780,000 acres	> 34 billion ft ² > 780,000 acres	ft ² + 34,000 acres + 0.78	Contaminated Soil	Area
> 130,000 to 13 million ft ² > 2.9 to 290 acres	> 13 million It ² > 290 acres	ft ² + 13 acres <u>+ 0</u> .00029	Pile	
>2.7 million to 270 million ft ² >62 to 6,200 acres	> 270 million ft ² > 6,200 acres	ft ² + 270 acres + 0.0062	Land Treatment	

HAZARDOUS WASTE QUANTITY (HWQ) CALCULATION

For each migration pathway, evaluate HWQ associated with sources that are available (i.e., incompletely contained) to migrate to that pathway. (Note: If *Actual Contamination Targets* exist for ground water, surface water, or air migration pathways, assign the calculated HWQ score or 100, whichever is greater, as the HWQ score for that pathway.) For each source, evaluate HWQ for one or more of the four tiers (Si Table 1; HRS Table 2-5) for which data exist: constituent quantity, wastestream quantity, source volume, and source area. Select the tier that gives the highest value as the source HWQ. Select the source volume HWQ rather than source area HWQ if data for both tiers are available.

Column 1 of SI Table 1 indicates the quantity tier. Column 2 lists source types for the four tiers. Columns 3, 4, 5, and 6 provide ranges of waste amount for sites with only one source, corresponding to HWQ scores at the tops of the columns. Column 7 provides formulas to obtain source waste quantity values at sites with multiple sources.

- 1. Identify each source type.
- 2. Examine all waste quantity data available for each source. Record constituent quantity and waste stream mass or volume. Record dimensions of each source.
- 3. Convert source measurements to appropriate units for each tier to be evaluated.
- 4. For each source, use the formulas in the last column of SI Table 1 to determine the waste quantity value for each tier that can be evaluated. Use the waste quantity value obtained from the highest tier as the quantity value for the source.
- 5. Sum the values assigned to each source to determine the total site waste quantity.
- 6. Assign HWQ score from SI Table 2 (HRS Table 2-6).

Note these exceptions to evaluate soil exposure pathway HWQ (see HRS Table 5-2):

- The divisor for the area (square feet) of a landfill is 34,000.
- The divisor for the area (square feet) of a pile is 34.
- Wet surface impoundments and tanks and non-drum containers are the only sources for which
 volume measurements are evaluated for the soil exposure pathway.

SI TABLE 2: HWQ SCORES FOR SITES

Site WQ Total	HWQ Score
0	0
1ª to 100	15
> 100 to 10.000	100
> 10.000 to 1 million	10.000
> 1 million	1.000,000

a If the WQ total is between 0 and 1, round it to 1.

b If the hazardous constituent quantity data are not complete, assign the score of 10.

SI TABLE 3: WASTE CHARACTERIZATION WORKSHEET

Site Name:	Chrome Wheel Concepts	References: <u>SCDN</u>
Sources:		
1. Electro-p	lating Metal Solutions 4.	7 .
	7	0

				UND					SURFA	CE WATER	PATHWAY				
SOURCE	HAZARDOUS SUBSTANCE	тохісіту	WATER	AIRWAI			OVERLAN	iD/FLOOD MI	IGRATION			GROU	ND WATER T	O SURFACE	WATER
			GW Mobility (HRS Table 3-8)	Tox/ Mobility Value (HRS Table 3-9)	Per (HRS Tables 4-10 and 4-11)	Tox/ Per Value (HRS Table 4-12)	Bioac Pot. (HRS Table 4- 15)	Tox/ pers/ Bioac Value (HRS Table 4-16)	Ecotox (HRS Tuble 4-19)	Ecotox/Pe rs (HRS Table 4-20)	Ecutox/Pe rs/ Bioac Value (HRS Table 4-21)	Tox/ Mob/ Pers Value (HRS Table 4-26)	Tox/ Mob/ Pers/ Bioac Value (HRS Table 4-28)	Ecotox/ Mob/ Pers Value (HRS Table 4-29)	Ecotox/ Mob/ Per/ Bioac Value (HRS Table 4-30)
1	Antimony	10.000	0.01	100	1.	1.00e+04	. 5	5.00e+04	100	100	5.00e+02	1.00e+02	5.00 c +02	1.00e+00	5.00e+00
1	Arsenic	10,000	0.01	100	1	1.00e+04	500	5.00e+06	10	10	5.00e+04	1.00e+02	5.00c+04	1.00e-01	5,00e+01
I	Chromium	10,000	0.01	100	1	1.00c+04	5	5.00e+04	100	100	5.00e+02	1.00e+02	5.00e+02	1.00e+00	5,00e+00
ı	Copper	N/s	0.01	N/a	- 1	N/a	50.000	N/a	100	100	5.00c+06	N/a	N/a	1.00e+00	5.00c+04
1	Cyanide	100	1.	100	0.4	4.00e-01	0.5	5.00c+01	1,000	400	2.00e+02	4.00e+01	2.00e+01	4.00e+02	2.00e+02
1	Lead	10,000	0.01	100	1 L	1.00c+04	5,000	5.00c+07	1,000	1,000	5.00c+06	1.00e+02	5.00e+05	1.00c+01	5.00e+04
1	Mercury	10.000	0.01	100	0.4	1 00e+04	50,000	5.00e+08	10.000	4,000	2.00e+08	4.00e+01	2.00c+06	4 00e+01	2.00e+06
1	Nickel	10,000	0.01	100	1	1.00e+04	500	5.00e+06	10	10	5.00e+03	1.00e+02	5.00e+04	1.00c-01	5.00c+01

GROUNDWATER PATHWAY GROUNDWATER USE DESCRIPTION

Describe Ground Water Use within 4 Miles of the Site:

Describe generalized stratigraphy, aquifers, municipal and private wells.

DeKalb County is in the central uplands district of the Piedmont physiographic province (Reference 5). The underlying geology of the area is made up of metamorphic and igneous rocks. Covering most of the area is saprolite, a clayey residual deposit produced by the weathering of the rocks. Depending on the properties of the parent rock and the topography, the saprolite in this area can range from 0 to 200 feet.

Groundwater in the area occupies joints, fractures and other secondary openings in the bedrock and pore spaces of the overlying soil. Precipitation recharges the groundwater found in these underground openings. Generally groundwater tends to flow the way of the surface topography of the area. This area slopes to the north toward the drainage ditch (References 1 and 4). Groundwater in this area is typically encountered between 10 and 600 feet below ground surface, and with very few exceptions, is under water table conditions. Yields for wells tend to be relatively small due to the low permeability of the crystalline rocks and overlying regolith, which limits the rate of recharge. For this reason, groundwater in this area is second to surface water for municipal supply.

There are approximately 414 people within a four-mile radius of the site who rely on private wells for their drinking water. None of these people live within 1/2 mile of the site (Reference 6). The nearest resident on private drinking water well is located between ½ mile and 1 mile from the site. The population served by city water is not included in the target population for groundwater because the City of Conley has a surface water withdrawal permit to take water from the Chattahoochee River (Reference 3).

Show Calculations of Ground Water Drinking Water Populations for each Aquifer: Provide apportionment calculations for blended supply systems. County average number of persons per household: Reference

Data provided from the U.S. Census Bureau (Reference 6). All wells in the area are completed in the uppermost aquifer (regolith and fractured bedrock system).

	Dista	nce from Si	te (miles)			Total
0-0.25	0.25-0.50	0.50-1.0	1.0-2.0	2.0-3.0	3.0-4.0	
63	181	573	7,664	21,776	39,483	69,740
0	0	7	29	69	309	414
63	181	566	7,635	21,707	39,174	69,326
	63	0-0.25	0-0.25 0.25-0.50 0.50-1.0 63 181 573 0 0 7	63 181 573 7,664 0 0 7 29	0-0.25 0.25-0.50 0.50-1.0 1.0-2.0 2.0-3.0 63 181 573 7,664 21,776 0 0 7 29 69	0-0.25 0.25-0.50 0.50-1.0 1.0-2.0 2.0-3.0 3.0-4.0 63 181 573 7,664 21,776 39,483 0 0 7 29 69 309

GROUND WATER PATHWAY WORKSHEET

LIKELIHOOD OF RELEASE	Score	Data Type	Refs
1. OBSERVED RELEASE: If sampling data or direct observation support a release to the aquifer, assign a score of 550. Record observed release substances on SI Table 4.	0		
2. POTENTIAL TO RELEASE: Depth to aquifer: <u>20</u> feet. If sampling data do not support a release to the aquifer, and the site is in karst terrain or the depth to aquifer is 70 feet or less, assign a score of 500; otherwise, assign a score of 340. Optionally, evaluate potential to release according to HRS Section 3.	500		
LR =	500		
TARGETS			
Are any wells part of a blended system? Yes No X If yes, attach a page to show apportionment calculations.	0		4, 6
3. ACTUAL CONTAMINATION TARGETS: If analytical evidence indicates that any target drinking water well for the aquifer has been exposed to a hazardous substance from the site, evaluate the factor score for the number of people served (SI Table 5).			
Level I: people x 10 = Total =			
4. POTENTIAL CONTAMINATION TARGETS: Determine the number of people served by drinking water wells for the aquifer or overlying aquifers that are not exposed to a hazardous substance from the site; record the population for each distance category in SI Table 6a or 6b. Sum the population values and multiply by 0.1.	5.3		6
5. NEAREST WELL: Assign a score of 50 for any Level I Actual Contamination Targets for the aquifer or overlying aquifer. Assign a score of 45 if there are Level II targets but no Level I targets. If no Actual Contamination Targets exist, assign the Nearest Well score from SI Table 6a or 6b. If no drinking water wells exist within 4 miles, assign 0.	9		6
6. WELLHEAD PROTECTION AREA (WHPA): If any source lies within or above a WHPA for the aquifer, or if a ground water observed release has occurred within a WHPA, assign a score of 20; assign 5 if neither condition applies but a WHPA is within 4 miles; otherwise assign 0.			6
7. RESOURCES: Assign a score of 5 if one or more ground water resources applies; assign 0 if none applies.	0		
 Irrigation (5 acre minimum) of commercial food crops or commercial forage crops Watering of commercial livestock Ingredient in commercial food preparation Supply for commercial aquaculture Supply for a major or designated water recreation area, excluding drinking water use 			
Sum of Targets T =	19.3		

10

SI TABLE 6 (From HRS TABLE 3-12): VALUES FOR POTENTIAL CONTAMINATION GROUND WATER TARGET POPULATIONS

SI Table 6a: Other Than Karst Aquifers

1								Populat	on Serve	d by Wei	ls within Di	stance Cat	egory				
	Distance from Site	Рор.	Nearest Well (choose highest)	1 to 10	11 to 30	31 to 100	101 to 300	301 to 1000	1001 10 3000	3001 to 10,000	10,001 to 30,000	30,001 to 100,000	100,001 to 300,000	300,001 to 1,000,000	1,000,000 to 3,000,000	Pop. Value	Ref.
	$0 \text{ to } \frac{1}{4} \text{ mile}$	0	20	4	17	53	164	522	1,633	5,214	16,325	52,137	163,246	521,360	1,632,455	0	
	$>\frac{1}{4}$ to $\frac{1}{2}$ mile	0	18	2	11	33	102	324	1,013	3,233	10,122	32,325	101,213	323,243	1,012,122	0	
Ω O	> 1/2 to 1 mile	7	9	Θ	5	17	52	167	523	1,669	5,224	16,684	52,239	166,835	522,385	ı	
6	> 1 to 2 miles	29,	5	0.7	3	10	30	94	294	939	2,939	9,385	29,384	93,845	293,842	3	
	> 2 to 3 miles	69	3	0.5	2	7	21	68	212	678	2,122	6,778	21,222	67,777	212,219	7	
	>3 to 4 miles	309	2	0.3	1	4	13	42	131	417	1,306	4,171	13,060	41,709	130,596	42	
•	Nearest \	Well =	9						:						Sum =	53	

GROUND WATER PATHWAY WORKSHEET (concluded)

WASTE CHARACTER	AISTICS			Score	Data Type	Does Not Apply
8. If any Actual Contami the calculated hazardous no Actual Contamination calculated for sources available.	nation Targets exis waste quantity scor Targets exist, assig ailable to migrate to	t for the aquifer or e or a score of 100 gn the hazardous wo ground water.	overlying aquifers, assign), whichever is greater; If vaste quantity score	10		
9. Assign the highest gro	und water toxicity/	mobility value from	m SI Table 3 or 4.	100		
10. Multiply the ground of Assign the Waste Charact	water toxicity/mobi teristics score from	lity and hazardous the table below: (1	s waste quantity scores. from HRS Table 2-7)	6		
Product	WC Score	product =	1.00e+03			
0 >0 to <10 10 to <100 100 to <1,000 1,000 to < 10,000 10,000 to < 1E + 05 1E + 05 to < 1E + 06 1E + 06 to < 1E + 07 1E + 07 to < 1E + 08 1E + 08 or greater	0 1 2 3 6 10 18 32 56 100		Score =			
L			WC =	6		**************************************

Multiply LR by T and by WC. Divide the product by 82,500 to obtain the ground water pathway score for each aquifer. Select the highest aquifer score. If the pathway score is greater than 100, assign 100

(Maximum of 100)

0.70

GROUND WATER PATHWAY SCORE: (LR X T X WC)/82,500

Chrome Wheels Site 15 Mile Downstream Pathway 4041 Koppers Ct. Atlanta, Dekalb County

Scale: 1 inch = 1 mile 33 39' 45" 84 19' 25"

> Surface Water Intakes from EPD GSB DR96-27(1996); Roads, Rivers, Wetlands from Georgia DOT (1993);

SURFACE WATER PATHWAY

LIKELIHOOD OF RELEASE AND DRINKING WATER THREAT WORKSHEET

LIKELIHOOD OF RELEASE-OVERLAND/FLOOD MIGRATION	Score	Data Type	Refs
1. OBSERVED RELEASE: If sampling data or direct observation support a release to surface water in the watershed, assign a score of 550. Record observed release substances on SI Table 7.	550		3.4
2. POTENTIAL TO RELEASE: Distance to surface water:(feet) If sampling data do not support a release to surface water in the watershed, use the table below to assign a score from the table below based on distance to surface water and flood frequency.			
Distance to surface water <500 <2500 feet			
Distance to surface water >2500 feet, and:			
Site in annual or 10-yr 500 floodplain			
Site in 100-yr floodplain 400			
Site in 500-yr floodplain 300			
Site outside 500-yr 100 floodplain			
Optionally, evaluate surface water potential to release according to HRS Section 4.1.2.1.2			
LR =	550		
LIKELIHOOD OF RELEASE GROUNDWATER TO SURFACE WATER MIGRATION	Score	Data Type	Refs
1. OBSERVED RELEASE: If sampling data or direct observation support a release to surface water in the watershed, assign a score of 550. Record observed release substances on SI Table 7.			
NOTE: Evaluate ground water to surface water migration only for a surface water body that meets all of the following conditions:			
1) A portion of the surface water is within 1 mile of site sources having a containment factor greater than 0. 2) No aquifer discontinuity is established between the source and the above portion of the surface water body. 3) The top of the uppermost aquifer is at or above the bottom of the surface water. Elevation of top of uppermost aquifer 890ft 910ft			
LR =	0		

Sample ID	Hazardous Substance	Bckgrd. Conc.	Toxicity/ Persistence	Toxicity/ Persis./ Bioaccum	Ecotoxicity/ Persis/ Ecobioaccum	References
SED-4	Arsenic	48 malka	10,000	5 x 106	50,000	5 CDM
SED-4	Chromium	24 malka	10,000	50,000	500	SCDM
SED - 4	C00025	17 malka	ΝA	N/A	5×106	SCDM
SED-4	Nickel	20 mg/kg	10,000	5×106	5,000	SCDM
	Н	ghest Values	10,000	5×106	5 × 106	

.

HRGNO 117	Sample Type		Lev	vel I	Level II	Population Served	Refere	ences
Sample ID	Hazardous Substance	Conc. (µg/L)	Benchmark Conc. (MCL or MCLG)	% of Benchmark	Cancer Risk Conc.	% of Cancer Risk Conc.	RID	% of RID
~	<u> </u>		l . Highest		Sum of	 	Sum of	
			Percent	<u> </u>	Percents	L	Percents	
Intake ID:	Sample Type			[/el l	Percents	Population Served		inces
Intake ID:	Sample Type Hazardous Substance	Conc. (µg/L)	Percent	% of		Population Served % of Cancer Risk Conc.		
·		Conc.	Percent Lev Benchmark Conc.	% of	Level II	% of Cancer	Refere	% of RID

SURFACE WATER PATHWAY LIKELIHOOD OF RELEASE AND DRINKING WATER THREAT WORKSHEET (CONTINUED)

DRINKING WATER THREAT T	ARGETS			Score	Data Type	Refs
Record the water body type, flow, an drinking water intake within the targe there is no drinking water intake w 0 to factors 3, 4, and 5.	d number of peopet distance limit in within the target of	le served by the waters distance lin	each hed. If nit, assign	Ô		3
Intake Name	Water Body Type	Flow	People Served			
	_					
Are any intakes part of a blended system If yes, attach a page to show apportionment	? YesNo ent calculations.					
3. ACTUAL CONTAMINATION TAR drinking water intake has been exposed the intake name and evaluate the factor s Table 8).	o a hazardous subst	ance from th	e site. list			
Level I: People x 10 = People x 1 = People x 1 =		Tota	nl =			
4. POTENTIAL CONTAMINATION T served by drinking water intakes for the hazardous substance from the site. Assign the population values from SI Tall	watershed that have	not been exp	posed to a			3
5. NEAREST INTAKE: Assign a score Drinking Water Targets for the watershed targets for the watershed, but no Level I Drinking Water Targets exist, assign a sc Table 9. If no drinking water intakes exist.	 d. Assign a score of targets. If no Actual core for the intake no 	f 45 if there a Il Contaminat	are Level II tion	0		3
6. RESOURCES: Assign a score of 5 if assign 0 if none applies. X Irrigation (5 acre minimum) of c crops						3.
 X Watering of commercial livestoc X Ingredient in commercial food property X Major or designated water recreases 	reparation	g drinking wa	ater use			
	SUI	M OF TAR	GETS T=	5		

SURFACE WATER PATHWAY (continued) HUMAN FOOD CHAIN THREAT WORKSHEET

				Data	
HUMAN FOOD CHA	AIN THREAT TA	ARGETS	Score	Туре	Refs
Record the water body ty If there is no fishery with of this page.	pe and flow for each	h fishery within the target distance limit. e limit, assign a score of 0 at the bottom			
Fishery Name: unnamed	Water Body: South	h River Flow: >100 cfs			
Species <u>Unknown</u> Species	Production Production	lbs/yr lbs/yr			
Fishery Name:_Water B	ody:Flow <u>:_</u> cfs				
Species Proc	luction Production	lbs/yr lbs/yr			
Fishery Name_Water Bo	dy_Flow _cfs				
SpeciesPr	oduction Production	lbs/yr lbs/yr			
FOOD CHAIN INDIVID	UAL		20		3, SI
7. ACTUAL CONTAM	NATION FISHER	ES:			Table 3
If analytical evidence ind substance with a bioaccur assign a score of 50 if the fishery, but no Level I fis	icates that a fishery nulation factor grea re is a Level I fisher hery	has been exposed to a hazardous ter that or equal to 500 (SI Table 10), ry. Assign 45 if there is a Level II			3, SI Table 3
8. POTENTIAL CONTA	•	FRIES:			
		accumulation factor greater than or equal thin the target distance limit, but there core of 20.			
		ed, assign a value for potential using the lowest flow at all fisheries			
Lowest Flow	FCI Value				
<10 cfs	20				
10 to 100 cfs	2				
>100 cfs, coastal tidal waters, oceans, or Great Lakes	0				
3-mile mixing zone in quiet flowing river	10	FCI Value =			
		SUM OF TARGETS T=	20		

SURFACE WATER PATHWAY (continued) ENVIRONMENTAL THREAT WORKSHEET

When measuring length of wetlands that are located on both sides of a surface water body, sum both frontage lengths. For a sensitive environment that is more than one type, assign a value for each type.

ENVIRONMENTAL	THREAT TARG	GETS			Score	Data Type	Refs
Record the water body ty within the target distance within the target distance	(see SI Table 12).	If there is no sen	isitive enviro	nment			3.7
Environment Name	Water Body Ty	pe Flow	w -				
Unnamed Creek South River	Wetlands Wetlands	<10 >1,	cfs 000 cfs cfs cfs				
9. ACTUAL CONTAMIN direct observation indicate substance from the site, rec the environment (SI Tables	any sensitive environr ord this information o	nent has been exp	S: If samplin	ardous			
Environment Name	Environment Type and Value (SI Tables 13 & 14)	Multiplier (10 for Level I, 1 for Level II)	Product				
10. POTENTIAL CONT	TAMINATION SEN	ISITIVE ENVIR	ONMENTS	:	10.05		3, 4
Flow	Dilution Weight (SI Table 12)	Environment Type and Value (SI Tables 13 & 14)	Pot. Cont.	Product			
Unnamed Creek <10 cfs	1	100	0.1 =	10.0			
South River >1,000 cfs	0.001	500	0.1 =	0.05			
cfs	X	Х	0.1 =				
cfs	Х	X	0.1 =				
				Sum =			
				T =	10.05		

SI TABLE 12 (HRS Table 4-13): SURFACE WATER DILUTION WEIGHTS

Type of Surface Water Body			
Descriptor	Flow Characteristics		
Minimal stream	< 10 cfs	1	
Small to moderate stream	10 to 100 cfs	0.1	
Moderate to large stream	> 100 to 1,000 cfs	0.01	
Large stream to river	> 1,000 to 10,000 cfs	0.001	
Large river	> 10,000 to 100,000 cfs	0.0001	
Very large river	> 100,000 cfs	0.00001	
Coastal tidal waters	Flow not applicable; depth not applicable	0.001	
Shallow ocean zone or Great Lake	Flow not applicable; depth less than 20 feet	0.001	
Moderate depth ocean zone or Great Lake	Flow not applicable; depth 20 to 200 feet	0.0001	
Deep ocean zone or Great Lake	Flow not applicable; depth greater than 200 feet	0.000005	
3-mile mixing zone in quiet flowing river	10 cfs or greater	0.5	

SI TABLE 13 (HRS TABLE 4-23): SURFACE WATER AND AIR SENSITIVE ENVIRONMENTS VALUES

SENSITIVE ENVIRONMENT	ASSIGNED VALUE
Critical habitat for Federal designated endangered or threatened species	100
Marine Sanctuary	
National Park	
Designated Federal Wilderness Area	
Ecologically important areas identified under the Coastal Zone Wilderness Act	
Sensitive Areas identified under the National Estuary Program or Near Coastal	
Water Program of the Clean Water Act	
Critical Areas identified under the Clean Lakes Program of the Clean Water Act	1
(subareas in lakes or entire small lakes)	
National Monument (air pathway only)	
National Seashore Recreation Area	
National Lakeshore Recreation Area	
Habitat known to be used by Federal designated or proposed endangered or threatened species	75
National Preserve	
National or State Wildlife Refuge	
Unit of Coastal Barrier Resources System	
Coastal Barrier (undeveloped)	1
Federal land designated for the protection of natural ecosystems	}
Administratively Proposed Federal Wilderness Area	
Spawning areas critical for the maintenance of flsh/shellfish species within a	1
river system, bay, or estuary	ł
Migratory pathways and feeding areas critical for the maintenance of	
anadromous fish species within river reaches or areas in lakes or coastal	1
tidal waters in which the fish spend extended periods of time	1
Terrestrial areas utilized by large or dense aggregations of vertebrate animals	i
(semi-aquatic foragers) for breeding	Į.
National river reach designated as recreational	1
Habitat known to be used by State designated endangered or threatened species	50
Habitat known to be used by a species under review as to its Federal endangered	
or threatened status	Ì
Coastal Barrier (partially developed)	1
Federally designated Scenic or Wild River	
State land designated for wildlife or game management	25
State designated Scenic or Wild River	
State designated Natural Area	l
Particular areas, relatively small in size, important to maintenance of unique biotic communities	1
State designated areas for the protection of maintenance of aquatic life under the Clean Water	5
State designated areas for the protection of maintenance of adjustic life under the Clean water. Act	
	
Wetlands See SI Table 14 (Surface Water Pathway) or SI Table 23 (Air Pathway)	1

SI TABLE 14 (HRS TABLE 4-24): SURFACE WATER WETLANDS FRONTAGE VALUES

Total Length of Wetlands	Assigned Value
Less than 0.1 mile	0
0.1 to 1 mile	25
Greater than 1 to 2 miles	50
Greater than 2 to 3 miles	75
Greater than 3 to 4 miles	100
Greater than 4 to 8 miles	150
Greater than 8 to 12 miles	250
Greater than 12 to 16 miles	350
Greater than 16 to 20 miles	450
Greater than 20 miles	500

SURFACE WATER PATHWAY (concluded) WASTE CHARACTERISTICS, THREAT, AND PATHWAY SCORE SUMMARY

WASTE CHARACTERISTICS

Score

11. If an Actual Contamina threat) exists for the waters score of 100, whichever is	hed, assign the calcula	water, human foo ated hazardous wa	d chain, or environmenta ste quantity score, or a	100
12. Assign the highest valurelease) for the hazardous sthe surface water characteri	ubstance waste charac	cterization factors	SI Table 3 (no observed below. Multiply each by	
	Substance Value	нwQ	Product	WC Score (from Table)
Drinking Water Threat Toxicity/Persistence	10,000	10	1.00e+05	18 (100 Max)
Food Chain Threat Toxicity/Persistence Bioaccumulation	5,000,000	10	5.00e+07	56 (1000 Max).
Environmental Threat Ecotoxicity/Persistence/Ecobioac cumulation	5,000,000	10	5.00e+07	56 (1000 Max)
Product	WC So	core		
0 >0 to <10 10 to <100 100 to < 1,000 1,000 to < 10,000 10,000 to < 1E + 05 1E + 05 to <1E + 06 1E + 06 to <1E + 07 1E + 07 to <1E + 08 1E + 08 to <1E + 09 1E + 09 to <1E + 10 1E + 11 to <1E + 11 1E + 11 to <1E + 12 1E + 12 or greater	0 1 2 3 6 10 18 32 56 100 180 320 560			

SURFACE WATER PATHWAY THREAT SCORES

Threat	Likelihood of Release (LR) Score	Targets (T) Score	Pathway Waste Characteristics (WC) Score (determined above)	Threat Score (LR x T x WC)/82	2,500
Drinking Water	550	5	18	0.60	(100 Max)
Human Food Chain	550	20	56	7.47	(100 Max)
Environmental	550	10.05	56	3.75	(60 Max)

SURFACE WATER PATHWAY SCORE (Drinking Water Threat + Human Food Chain Threat + Environmental Threat)

(100 max)

SOIL EXPOSURE PATHWAY WORKSHEET RESIDENT POPULATION THREAT

LIKELIHOOD OF E	XPOSURE			Score	Type	Refs
1. OBSERVED CONTA contamination (depth of 2 Note that a likelihood of of 0.	2 feet or less), assign	a score of 550;	otherwise, assign a 0.	.550		4
			LE =	550		
TARGETS						
2. RESIDENT POPULA residences or attending so areas of observed contam	chool or day care on t	the property and		0		4
	eople x 10 =		Sum =			
3. RESIDENT INDIVID population exists. Assign targets. If no resident po (HRS Section 5.1.3).	n a score of 45 if there	e are Level II ta	argets but no Level I	0		4
4. WORKERS: Assign a at the site and nearby fact associated with the site.	ilities and within 200	ft. Of areas of		10		4
	Number of Workers	Score				
	0 1 to 100 101 to 1,000 >1,000	0 5 10 15				
5. TERRESTRIAL SENSI sensitive environment (SI T				0		4
Terrestrial Sensitive Enviro	nment Type		Value			
					3333444331 3333444331	
		Sum =	0	0		
6. RESOURCES: Assign a on an area of observed cont - Commercial agriculture, - commercial livestock grazin	amination at the site: as Commercial silvicultur	ssign 0 if none ar	pplies.	O Comments of the comments of		
		Tot	al of Targets T=	10		

SOIL EXPOSURE PATHWAY WORKSHEET NEARBY POPULATION THREAT

LIKELIHOOD OF EXPOSURE	Score	Data Type	Ref.
7. Attractiveness/Accessibility (from SI Table 17 or HRS Table 5-6) Value 10	5		4
Area of Contamination (from SI Table 18 or HRS Table 5-7) Value5			
Likelihood of Exposure (from SI Table 19 or HRS Table 5-8)			
LE =	5		
TARGETS	Score	Data Type	Ref.
8. Assign a score of 0 if Level I or Level II resident individual has been evaluated or if no individuals live within 1/4 mile travel distance of an area of observed contamination. Assign a score of 1 if nearby population is within 1/4 mile travel distance and no Level I or Level II resident population has been evaluated.			6
9. Determine the population within I mile travel distance that is not exposed to a hazardous substance from the site (i.e., properties that are not determined to be Level I or Level II); record the population for each distance category in SI Table 20 (HRS Table 5-10). Sum the population values and multiply by 0.1.	6.0.		6
T =	7.0		

SI TABLE 17 (HRS TABLE 5-6): ATTRACTIVENESS/ACCESSIBILITY VALUES

Area of Observed Contamination	Assigned Value
Designated recreational area	100
Regularly used for public recreation (for example, vacant lots in urban area)	75
Accessible and unique recreational area (for example, vacant lots in urban area)	75
Moderately accessible (may have some access improvements—for example, gravel road) with some public recreation use	50
Slightly accessible (for example, extremely rural area with no road improvement) with some public recreation use	25
Accessible with no public recreation use	10
Surrounded by maintained fence or combination of maintained fence and natural barriers	5
Physically inaccessible to public, with no evidence of public recreation use	0

SI TABLE 18 (HRS TABLE 5-7): AREA OF CONTAMINATION FACTOR VALUES

Total area of the areas of observed contamination (square feet)	Assigned Value
≤ to 5,000	5
> 5,000 to 125,000	20
> 125,000 to 250,000	40
> 250,000 to 375,000	60
> 375,000 to 500,000	80
> 500,000	100

SI TABLE 19 (HRS TABLE 5-8): NEARBY POPULATION LIKELIHOOD OF EXPOSURE FACTOR VALUES

AREA OF CONTAMINATION		ATTRA	CTIVENESS/A	CCESSIBILITY	FACTOR V	ALUE	
FACTOR VALUE	100	75	50	25	10	5	0
100	500	500	375	250	125	50	0
80	500	375	250	125	50	25	0
60	375	250	125	50	25	5	0
40	250	125	50	25	5	5	C
20	125	50	25	5	5	5	0
⑤	50	25	5	5	(5)	5	0

SI TABLE 20 (HRS TABLE 5-10): DISTANCE-WEIGHTED POPULATION VALUES FOR NEARBY POPULATION THREAT

Travel Distance					Nu	mber o	1 peop	le with	h the tra	vel dista	nce categ	ory		<u>J</u>
Category (miles)	Pop.	0	1 to 10	11 to 30	31 to 100	101 to 300	301 to 1,000	1,001 to 3,000	3,001 to 10,001	10,001 to 30,000	30,001 to 100,000	100,001 to 300,000	300,001 to 1,000,000	Pop Valu
Greater than 0 to $\frac{1}{4}$	63	0	0.1	0.4	1.0	4	13	41	130	408	1,303	4,081	13,034	1
Greater than $\frac{1}{4}$ to $\frac{1}{2}$	181	0	0.05	0.2	0.7	2	7	20	65	204	652	2,041	6,517	2
Greater than $\frac{1}{2}$ to 1	573	0	0.02	0.1	0.3	1	3	10	33	102	326	1,020	3,258	3
	- 11								Reference	;e(s)			Sum =	6

SOIL EXPOSURE PATHWAY WORKSHEET (concluded)

WASTE CHARACTERISTICS

10. Assign the hazard	10		
11. Assign the highes	t toxicity value fro	om SI Table 15 or 3.	10,000
12. Multiply the toxic Waste Characteristics Product		waste quantity scores. Assign the le below: Product = 1.00e+05	
0 >0 to <10 10 to <10 100 to <1,000 1,000 to < 10,000 10,000 to < 1E + 05 1E + 05 to < 1E + 06 1E + 06 to < 1E + 07 1E + 07 to < 1E + 08 1E + 08 or greater	0 1 2 3 6 10 18 32 56 100	WC =	18

RESIDENT POPULATION THREAT SCORE:	
(Likelihood of Exposure, Question 1; Targets = Sum of Questions 2, 3, 4, 5, 6) LE x T x WC 82,500	1.20
NEARBY POPULATION THREAT SCORE:	
(Likelihood of Exposure, Question 7; Targets = Sum of Questions 8,9) LE x T x WC 82,500	0:008
5 x 1.06 x 18 / 82,500	
SOIL EXPOSURE PATHWAY SCORE: Resident Population Threat + Nearby Population Threat	1-21 (100;Max)

AIR PATHWAY WORKSHEET

LIKELIHOOD OF RELEASE		Score	Data Type	Refs
1. OBSERVED RELEASE: If sampling data or direct obserto air, assign a score of 550. Record observed release substant	vation support a release aces on SI Table 21.			
2. POTENTIAL TO RELEASE: If sampling data do not sup assign a score of 500. Optionally, evaluate air migration gase potential to release (HRS Section 6.1.2.).	oport a release to air, eous and particulate			
	LR =	0		
TARGETS				
3. ACTUAL CONTAMINATION POPULATION: Determing within the target distance limit subject to exposure from a released substance to the air.	ne the number of people ease of a hazardous			
a) Level I: people x 10 = b) Level II: people x 1 =	Total =			
4. POTENTIAL TARGET POPULATION: Determine the nather than the target distance limit not subject to exposure from a release	number of people within e of a hazardous			
substance to the air, and assign the total population score from values and multiply the sum by 0.1.				
5. NEAREST INDIVIDUAL: Assign a score of 50 if there a Assign a score of 45 if there are Level II targets but no Level Contamination Population exists, assign the Nearest Individu 22.	I targets. If no Actual			
6. ACTUAL CONTAMINATION SENSITIVE ENVIRONS sensitive environment values (SI Table 13) and wetland acrea for environments subject to exposure from the release of a ha	age values (SI Table 23)			
Sensitive Environment Type	Value			
Wetland Acreage	Value			
7. POTENTIAL CONTAMINATION SENSITIVE ENVIRON Table 24 to evaluate sensitive environments not subject to ex				
8. RESOURCES: Assign a score of 5 if one or more air resonable of a source; assign a 0 if none applies. - Commercial agriculture, - Commercial silviculture, - Ma	urces apply within 2	0	Section of the sectio	
recreation area.	Т-	•		

AIR PATHWAY (concluded)

9. If any Actual Contam calculated hazardous wa there are no Actual Cont HWQ score for sources a			
10. Assign the highest ai			
11. Multiply the air path Assign the Waste Charac	way toxicity/mobilit eteristics score from	ty and hazardous waste quantity scores. the table below:	
Product 0 >0 to <10 10 to <10 100 to <1,000 1,000 to <10,000 10,000 to <1E + 05 1E + 05 to <1E + 06 1E + 06 to <1E + 07 1E + 07 to <1E + 08 1E + 08 or greater	WC Score 0 1 2 3 6 10 18 32 56 100	Product = 0.00e+00 WC =	

AIR PATHWAY SCORE:

 $\underset{\mathbf{82,500}}{\underline{\text{LE x T x WC}}}$

0.0

(100 max)

SITE SCORE CALCULATION	$S^{i_{i_{j_{i_{j_{i_{j_{i_{i_{i_{i_{i_{i_{i_{i_{i_{i_{i_{i_{i_$
GROUND WATER PATHWAY SCORE (S _{GW})	0.70
SURFACE WATER PATHWAY SCORE (S _{sw})	11.82
SOIL EXPOSURE (S _S)	1.46
AIR PATHWAY SCORE (S _A)	0.00
SITE SCORE $\sqrt{\frac{S_{GW}^2 + S_{SW}^2 + S_S^2 + S_A^2}{4}} =$	

COMMENTS

The above site score indicates that this site should not be evaluated further under HRS. However, there are some points to note on the scoring:

- 1. The sediment data indicates residual metals contamination above background levels. This may be attributable to the release at Chrome Wheel Concepts and/or Hickson Industries that manufactures CCA. Additional sampling would be needed to determine the contribution from Hickson Industries.
- 2. The soil pathway was evaluated using the sediment data to justify a release scenario since the sediment is less than 2 feet in depth. The soil sample itself did not justify a release scenario.
- 3. Only arsenic, chromium, copper, and nickel values from SI Table 3 were used in scoring since they were the only constituents detected greater than 3 times background levels.

U.S. ENVIRONMENTAL PROTECTION AGENCY **REGION IV**

POLREP #9 and FINAL

DATE:

March 26, 2001

FROM:

Frank J. García

TO:

Myron D. Lair, ERRB

Dan Thorton, EPA HQ, ERD Regional Coordinator

EPA Region 4 Regional Response Center

T. **GENERAL SITE INFORMATION**

Site Name:

Koppers Court Release

Street Address:

4041 Koppers Court

Conley, Dekalb County, Georgia

Site No:

A4N6

EPA ID No.:

GASFN0406949

Response Authority:

CERCLA

Delivery Order No.:

4009-F4-012

NPL Status:

Non-NPL

Incident Category:

Emergency Response

State Notification:

Georgia Environmental Protection Division

Status of the Action Memorandum:

May 12, 1999, \$200,000

Start Date:

May 5, 1999

Completion Date:

June 4, 1999

П. **BACKGROUND:**

Type of facility or site: Chrome plating facility A.

В Site description:

On Wednesday, May 5, 1999, the GAEPD, requested the assistance of the EPA Emergency Response and Removal Branch to perform a site investigation at an abandoned chrome plating facility. After a careful investigation, it was determined that an unknown amount of what appeared to be chromic acid, was released along the back of the Chrome Wheel Concepts facility. The liquid traveled from the back of the facility to a drainage ditch. Vegetation and surface water along the path of the release was impacted. Additionally, a drainage ditch at a nearby company (Hickson Corporation) was contaminated. Analytical results have shown the presence of elevated levels of chrome in soil, sediment and water samples.

The back of the facility drained into a culvert running parallel to I-675, which is located directly behind the facility. The culvert flows south for approximately 100 yards, joins with another culvert flowing north, and turns under the expressway. The culvert emerges from under the expressway at the rear of the Hickson facility and flows north along the east side of Koppers Court, eventually discharging into the Yellow River.

Numerous drums, vats and containers were observed inside the facility. .

Sample results from sediment samples revealed a level of 4000 parts per million (ppm) for chrome. Typical removal action levels for chrome in this area should be less than 120 ppm. Chromic acid has been shown to be a human carcinogen.

III. RESPONSE INFORMATION:

A. Actions Taken:

On May 5, 6 and 8, START collected numerous samples consisting of soil, water, sediment and waste. The soil, water and sediment samples were collected from impacted areas along the back side of the facility. Soil samples were analyzed for TCLP, priority pollutant metals, total cyanide and pH. Some of the sediment samples were collected from the Hickson facility side and analyzed for the same constituents as mentioned before. Water samples were collected from the culvert and analyzed for priority pollutant metals, total cyanide and pH. Several waste samples were collected from a garden hose in the backyard of the Chrome Wheel Concepts facility. This hose appeared to have been utilized to transfer the chrome acid waste from the facility to the backyard and culvert. Several other waste samples were collected from containers inside the facility.

In order to perform the cleanup, International Technologies Inc. (IT) was contracted by the US EPA. Fisher Industries was contracted by Hickson Corp. to remove liquid from the culvert and creek located on the Hickson property.

On May 5, 1999, Fisher Industries removed several hundred gallons of liquid from the culvert along Hickson's property. On May 6, 1999, IT began pumping liquid from the Chrome Wheel Concepts side. The liquid collected by both Fisher and IT was placed into a poly storage tank until disposal arrangements could be made. The removal of the liquid was hampered by heavy rains that fell on May 5 and 6.

On May 6, 1999, IT began excavating contaminated soil from the back of the Chrome Wheel Concepts facility. Approximately 40 cubic yard of contaminated soil was excavated. Once all of the contaminated soil and liquid were sampled and profiled, all of the waste was properly disposed.

B. Use of Innovative Technologies:

No innovative treatment alternatives were utilized.

C. Community Involvement:

The OSC interviewed the next door building tenants to gather as much information as possible about the site. However, none of the tenants had any information regarding the nature of the activities that occurred at the site.

D. Unusual Circumstances:

There were no unusual circumstances encountered during this removal action. However, the removal of the liquid from the culvert was hampered by heavy rain that fell on May 5th and 6th.

E. Future Considerations:

None.

F. Post Removal Site Control:

GAEPD agreed to address all of the waste contained inside the facility.

IV. CONTRACTOR INFORMATION AND ESTIMATED COST:

A. Contractor Information

CONTRACTOR	DO NUMBER	POP START	POP END	DO AMOUNT
International	4009-F4-012	05/05/99	7/5/99	\$48,735.33
Technology Corp.				
EPA				\$20,000.00
TOTAL				\$58,735.33

B. Estimated Cost

Extramural Costs:

	Ceiling
ERRS START START	
TOTAL, EXTRAMURAL COSTS	\$180,000
Intramural Costs:	
Direct Costs (Region, HQ, ERT)	
TOTAL, INTRAMURAL COSTS	\$ 20,000
TOTAL PROJECT CEILING/SITE COST	\$200,000

The costs shown are based on information available at the time this report was prepared. These figures should not be used to support or dispute any legal action regarding this removal.

V. DISPOSITION OF WASTE:

A. Disposition of Waste

Bulk Groups	Description	Shipping Name	Disposal Location
1	107 tons	Non-Hazardous Soil	BFI/Hickory Ridge Landfill 3330 Moreland Ave. Conley, GA 30288
2	2547 gallons	Chromic Acid	USL City Environmental 1923 Frederick St. Detroit, MI 48211

VI. ROSTER OF AGENCIES/ ORGANIZATIONS ASSISTING IN REMOVAL:

Org/ Agency, Address	Primary Contact	Phone Number	Role, Activity
U.S.EPA, ERRB 61 Forsyth Street Atlanta, Georgia 30303	Francis Garcia	(404) 562-8763 (404) 562-8699 Fax	On-Scene Coordinator
START Team Tetra Tech EM Inc. 1750 Corporate Drive Suite 735 Norcross, GA 30093	Charles Berry	(770) 717-2338	Oversight Contractor
International Tech. Corp. 5445 Triangle Parkway 735 Norcross, GA 30092	Scott Lyle	(770) 729-3900	Response Manager
GADNR Atlanta Tradeport 4244 International Parkway Atlanta, GA 30354	John W. Hill	(404) 362-4917	Investigative Officer
GAEPD Emergency Response Team 7 MLK Drive, Suite 643 Atlanta, GA 30334	Scott Robertson	(404) 656-6905	Emergency Responder
Hickson Corporation 1955 Lake Park Drive Suite 250 Smyrna, GA 30080	William Baldwin	(770) 801-6600	Vice President Operations and Industry Relations
Fisher Industrial Service Inc. P.O. BOX 5410 Glencoe, AL 35905-0410	Stephen Cochran	(256) 492-8340	Regional Sales Manager

THE RESERVE OF THE PROPERTY OF
SITE:
BREAK: 1.8
The state of the s
OTHER: vol. 1
Control of the last of the las

PRELIMINARY ASSESSMENT

CHROME WHEEL CONCEPTS

4041 KOPPERS COURT

CONLEY, DEKALB COUNTY, GEORGIA EPA I.D. No. GAR000012658

PREPARED FOR U.S. EPA REGION IV

BY

GEORGIA DEPARTMENT OF NATURAL RESOURCES ENVIRONMENTAL PROTECTION DIVISION HAZARDOUS WASTE MANAGEMENT BRANCH

September 27, 2001

Prepared by:

Terri Crosby
Environmental Engineer
Hazardous Waste Management Branch

TABLE OF CONTENTS

1.0	INTRODUCTION			3	
2.0	SITE	DESCRIPTION	ON, OPERATIONAL HISTORY, AND WASTE	3	
CHARACTERISTICS					
	2.1				
	2.2		ion		
	2.3	_	History and Waste Characteristics		
3.0 GROUN		_	DWATER PATHWAY		
	3.1	Hydrogeolog	ic Setting	7	
	3.2	Groundwater	Targets	7	
	3.3	Groundwater	Conclusions	9	
4.0	SURI	SURFACE WATER PATHWAY			
	4.1	Hydrologic S	etting	9	
	4.2		r Targets		
	4.3	Surface Wate	r Conclusions	11	
5.0	SOIL	OIL EXPOSURE AND AIR PATHWAY			
	5.1	Physical Con	ditions	12	
	5.2		Гargets		
5.3 So		Soil Exposure	e and Air Pathway Conclusions	12	
			CONCLUSIONS	12	
REF	ERENC	ES		14	
APPI	ENDIX	A	••••••	16	
APPI	ENDIX	B		24	
FIGU	JRES		Site Location		
			Site Layout		
			Location of Groundwater Usage Wells		
		4	Surface Water Pathway		
TAB	LES	1 1	Orinking Water Populations		
		2	Protected Plants		
APP	ENDIX	A Chrom	e Wheel Concepts Sampling and Analytical Data		
APPENDIX B			Copy of References		
		1 /			

PRELIMINARY ASSESSMENT

Chrome Wheel Concepts

Conley, Dekalb County, Georgia

1.0 INTRODUCTION

Under authority of the Comprehensive Environmental Response, Compensation and Liability Act of 1980 (CERCLA) and the Superfund Amendments and Reauthorization Act of 1986 (SARA), the US Environmental Protection Agency (EPA) Region IV, Waste Management Division has authorized the Georgia Department of Natural Resources, Environmental Protection Division (EPD) to conduct a Preliminary Assessment (PA) at the Chrome Wheel Concepts in Conley, Dekalb county, Georgia. The purpose of the investigation was to collect information concerning conditions at the Chrome Wheel Concepts site sufficient to assess the immediate or potential threat posed to human health and the environment and to determine the need for additional investigation under CERCLA/SARA or other action. The scope of the investigation included review of available file information, a comprehensive target search, and a review of on-site and off-site reconnaissance field notes.

On May 5, 1999, workers at a neighboring property noticed an unusual color in water running through a culvert at the rear of the property located at 1579 Koppers Road, Conley, Georgia. After discovering a suspected point source for the discoloration, the workers contacted the Emergency Response Program of the Georgia Environmental Protection Division. The suspected point source of the discoloration was the backyard of a small plating facility, Chrome Wheel Concepts, located at 4041 Koppers Court, Conley, Georgia. The Georgia Emergency Response Program contacted the Region 4 Emergency Response and Removal Branch for assistance in preventing the immediate threat of continuing migration of the contaminants to the surface water bodies.

An area of discoloration was evident in the soil, and it was covered with a tarp to protect it from the heavy rains falling at the time. The yard drains into a culvert running parallel to Interstate 675, located directly behind the facility. The culvert flows south for approximately 100 yards, joins with another culvert flowing north, and turns under the expressway. The culvert emerges from under the expressway and bisects the neighboring property, eventually discharging into the Yellow River. Responding personnel suspected the discoloration in the water was waste from Chrome Wheel Concepts. Response activities included sampling and removal actions.

2.0 SITE DESCRIPTION, OPERATIONAL HISTORY, AND WASTE CHARACTERISTICS

2.1 Location

The Chrome Wheel Concepts site is located at 4041 Koppers Court and is located to the southeast of the city of Atlanta in Conley, Georgia as shown on Figure 1. The geographic coordinates are 84°19'25" W longitude and 33°39'45" N latitude as shown on the United States Geological Survey

(U.S.G.S.) Quadrangle Topographical Map (Reference 1). To reach the site: take the US-23/MORELAND AVE exit off of Interstate 285 (exit number 53), proceed north approximately 0.3 miles, turn right onto Henrico Rd., approximately 1.4 miles turn right onto Koppers Rd., approximately 0.3 miles turn left onto Koppers Court.

The climate in Dekalb County, Georgia consists of average temperatures ranging from 44 degrees Fahrenheit in January to 78 degrees Fahrenheit in July and August (Reference 2). The mean annual rainfall for this area is approximately 50 inches per year (Reference 2).

2.2 Site Description

The total area of the Chrome Wheel Concepts site is approximately one acre. Access to the site is from Koppers Court. Koppers Court is oriented north-south and forms the eastern property boundary. Interstate 675 forms the western boundary; an industrial facility, Iron Peddlers, forms the southern boundary; and a wooded lot forms the northern property boundary to the Chrome Wheel Concepts site. The site layout is depicted in Figure 2. (Reference 3)

2.3 Operational History and Waste Characteristics

Terek Green was the operator of the Chrome Wheel Concepts site. He was purchasing the property from George Tippen. Terek Green defaulted in payments to George Tippen and the property was in the middle of foreclosure.

Terek Green submitted an EPA Notification Form on October 6, 1997, as a conditionally exempt small quantity generator, and was issued EPA ID No. GAR000012658. The waste code identified on the notification from was for corrosive waste (Reference 4).

Chrome Wheel Concepts was a manufacturing facility that performed decorative chrome plating on wheel accessories. The actual operations that took place at Chrome Wheel Concepts are unknown. However, the process of chrome plating is very standard, and there is much more to electroplating than the final step of laying down a coating on the plating metal (Reference 5). The surface of the object to be plated must be prepared to accept the finish of the desired metal to be plated. Preparation of the surface would include various aspects of cleaning. Cleaning involves organic solvents and alkaline cleaning solutions. Acid dipping generally follows the cleaning cycle. An undercoating is also applied prior to the final or topcoat of chromium. The undercoats are usually a nickel or copper coating used for the protective values. For building up heavy deposits of undercoating, the parts are first "struck" in a cyanide bath. Chromium is the final finish in the process. Solutions of chromic acid are used in the plating process. The chromium topcoat provides a shiny, decorative appearance.

Chrome Wheel Concepts according to Mr. Green ceased operation around the first quarter of 1999. However, on May 5, 1999, workers at a neighboring property noticed an unusual color in water running through a culvert at the rear of the property located at 1579 Koppers Road, Conley, Georgia. After discovering a suspected point source for the discoloration, the workers contacted the Emergency Response Program of the Georgia Environmental Protection Division. The suspected point source of the discoloration was the Chrome Wheel Concepts facility.

The Georgia Emergency Response Program contacted the Region 4 Emergency Response and Removal Branch for assistance in preventing the immediate threat of continuing migration of the contaminants to the surface water bodies. The response activities included sampling and removal actions. The Region 4 and the Georgia Emergency Response teams took samples of the waste found inside and outside of the building, of the soil, of the sediment, and of the surface water. The sample results are attached as Appendix A. The contaminants of concern are antimony, arsenic, chromium, copper, lead, mercury, nickel, cyanide, and the pH of the solutions. The sample results documented that a release had occurred (Reference 6).

3.0 GROUNDWATER PATHWAY

3.1 Hydrogeologic Setting

This site lies within the Piedmont/Blue Ridge Province. Metamorphic and igneous rocks that range in age from Precambrian to Triassic underlie this area. Common rock types in the area include granite, granite gneiss, biotite gneiss, mica schist, and amphibolite. These rocks are complexly folded and faulted (Reference 7). Weathering processes result in an overlying mantle of unconsolidated material called saprolite as well as the development of soil. These materials together are referred to as the regolith (Reference 8).

Ground water in this area occurs mainly in the saturated regolith and in discontinuities in the underlying rocks, such as joints, fractures, foliation, and weathered zones. The relatively more permeable regolith serves as a reservoir to trap and channel recharge water into the underlying network of discontinuities in the relatively less permeable bedrock. The orientation of these discontinuities controls groundwater flow directions. Because the regolith and bedrock comprise a single flow system, the "uppermost aquifer" is the only aquifer underlying the site (Reference 8).

Groundwater in this area is typically encountered between 10 and 600 feet below ground surface, and with very few exceptions, is under water table conditions (Reference 9). Yields for wells tend to be relatively small due to the low permeability of the crystalline rocks and overlying regolith, which limits the rate of recharge. For this reason, groundwater in this area is second to surface water for municipal supply. Well yields are highly dependent on well placement and site specific geology, however, and locally may be sufficient for municipal supply. (Reference 8)

3.2 Groundwater Targets

There are 413 people within four miles of the Chrome Wheel Concepts site utilizing the groundwater as their source of drinking water (Table 1). The Census report identified seven people using the groundwater for their drinking water within one mile of the site (Reference 10). The location of the known groundwater usage wells is depicted in Figure 3.

Table 1 shows the populations and their water source within distance radii from the site. The population served by city water is not included in the target population for groundwater because the city has a surface water withdraw permit from the Chatahoochee River (Reference 11).

TABLE 1: DRINKING WATER POPULATIONS

(Reference 10)

	Private Groundwater	Population Served By City Water	Total Population
0 - 0.25	0	63	63
0.25 - 0.50	0	181	181
0.50 - 1.0	7	566	573
1.0 - 2.0	29	7635	7664
2.0 - 3.0	69	21707	21776
3.0 - 4.0	309	39174	39483

3.3 Groundwater Conclusions

A release of hazardous substances from the Chrome Wheel Concepts property to groundwater is suspected due to the documentation of soil contamination. However, no primary targets were identified. The nearest groundwater usage well in within the ½ to 1 mile distance ring. The populations served by private groundwater wells are considered secondary targets.

4.0 SURFACE WATER PATHWAY

4.1 Hydrologic Setting

The Chrome Wheel Concepts site is not considered to lie in a 100 year mapped floodplain (Reference 12). The topography of the site is such that surface water primarily flows to the west where it drains into a concrete culvert directly behind the facility. The culvert flows south for approximately 100 yards, joins with another culvert flowing north, and turns under the I-675 expressway. The culvert emerges from under the expressway at the rear of an industrial facility and forms a small, unnamed tributary. The unnamed tributary flows north along the east side of Koppers Road. It crosses Bonsal Road and continues flowing northeast. It eventually flows underneath the I-285 exchange and discharges into the South River. The South River flows southeast past the fifteenmile mark for the Chrome Wheel Concept site and combines with the Yellow River and the Alcovy River. There are designated wetlands throughout the surface water pathway. The flow rate of the unnamed tributary is less than 10 cfs (Reference 13). The South River flows at less than 100 cfs (Reference 13). The surface water 15-mile pathway is depicted in Figure 4.

State and US Highways
Interstate Highways
Rivers/Streams
Lake/Pond
Swamp/Marsh
15 Mile Downstream Pathway

Chrome Wheels Site 15 Mile Downstream Pathway 4041 Koppers Ct. Atlanta , Dekalb County

Scale: 1 inch = 1 mile 33 39' 45" 84 19' 25"

> Surface Water Intakes from EPD GSB DR96-27(1996); Roads, Rivers, Wetlands from Georgia DOT (1993);

4.2 Surface Water Targets

No surface water intakes are present within 15 miles downstream of the site (Reference 15). Most residents of Dekalb and Henry County receive their drinking water from a system that has a surface water withdraw permit north of the Chrome Wheel Concepts site. Residents not served by a city system receive water from private wells.

The unnamed tributary and the South River downstream of the site are used for recreational fishing. Some of the commonly caught species include catfish, large mouth bass, silver redhorse and crappie (Reference 14). There are over 100 wetlands within 15 miles downstream of the site (Reference 15).

The nearest wetland is approximately 50 yards from known contamination (Reference 3).

The endangered, threatened, rare or unusual plants whose range includes Dekalb and Henry Counties, which are included in the fifteen-mile surface water flow, include those listed in Table 2. All plants listed are known to generally occur in these counties. The environment of the surface water pathway includes that similar to the habitats of the plants. There are no endangered or threatened animals along the surface water pathway.

TABLE 2: PROTECTED PLANTS (Reference 16)

NAME	NAME
Allium speculae Flatrock Onion	Ribes curvatum Granite Gooseberry
Amorpha schwerinii Schwerin Indigo-bush	GASchisandra glabra Bay Starvine
USAmphianthus pusillus Pool Sprite, Snorkelwort	GA Sedum pusillum Dwarf Granite Stonecrop
Amsonia ludoviciana Louisiana Blue Star	Viburnum rafinesquianum var. rafinesquianum Downy Arrowwood
Anemone berlandieri Glade Windflower	GAWaldsteinia lobata Piedmont Barren Strawberry
Aster avitus Alexander Rock Aster	GAMelanthium woodii Ozark Bunchflower
USAster georgianus Georgia Aster	GANestronia umbellula Indian Olive
Eriocaulon koernickianum Pipewort	Panax quinquefolius American Ginseng
Fimbristylis brevivaginata Flatrock Fimbry	Pilularia americana American Pillwort
USIsoetes melanospora Black-spored Quillwort	Pycnanthemum curvipes Mountain-mint

^{*} The designation of US or GA is for United States Classification or Georgia's classification.

4.3 Surface Water Conclusions

A release to surface water and sediment is suspected because of the analytical results of surface water and sediment samples taken by EPA and GAEPD. The nearest wetland had documented contamination and is considered a primary sensitive environment. There are numerous wetlands, but no drinking water intakes within 15 miles downstream from the site. There are recreational fishing activities all along the South River that are considered as secondary fisheries.

5.0 SOIL EXPOSURE AND AIR PATHWAY

5.1 Physical Conditions

The Chrome Wheel Concepts site is located in a rural/industrial area in Conley, Georgia. Land use surrounding the site includes undeveloped property and industrial sites. The facility was not currently operating. At the time of the release, there were numerous chemicals onsite inside the building.

5.2 Soil and Air Targets

There are no workers at the site. The nearest residence is greater than 200 feet from the site (Reference 4). There are sixty-three people that live within 0.25 miles of the site, and the total population within a 4-mile radius of the site is 69,739 (Reference 10). The nearest school is approximately 0.5 miles from the site (Reference 4). There exists the possibility that terrestrial sensitive environments for the endangered or threatened species listed on Table 2 are found within the four- mile radius of the site. There are numerous wetlands located within the 4-mile radius of the site.

5.3 Soil Exposure and Air Pathway Conclusions

There is documented soil contamination on the Chrome Wheel Concepts site (Reference 6). The site is located in an industrial area; thereby, there are few potential targets. A release to air is not suspected. During the site reconnaissance, there were no odors emanating from the site and no blowing dust was observed.

6.0 SUMMARY AND CONCLUSIONS

The site is a closed manufacturing facility. The former operator of Chrome Wheel Concepts, Mr. Terek Green., manufactured chrome plated wheel accessories. Chrome Wheel Concepts was a manufacturing facility that performed decorative chrome plating on wheel accessories. The actual operations that took place at Chrome Wheel Concepts are unknown. The plating process used many different hazardous and regulated materials, including solvents, acids, cyanide baths, and metal plating baths. The beginning date of operations on the site as Chrome Wheel Concepts was in 1997. In May 1999, a release was discovered at the Chrome Wheel Concepts site. The Georgia Environmental Protection Division (EPD) and Region 4 Environmental Protection Agency were notified. Samples were taken and identified soil, sediment, and surface water contamination from the Chrome Wheel Concepts site. (Reference 6).

A release of hazardous substances from the Chrome Wheel Concepts property to groundwater is suspected due to the documentation of soil contamination. However, no primary targets were identified. The nearest groundwater usage well in within the ½ to 1 mile distance ring. The populations served by private groundwater wells are considered secondary targets.

A release to surface water and sediment is suspected because of the analytical results of surface water and sediment samples taken by EPA and GAEPD. The nearest wetland is considered a primary sensitive environment. There are numerous wetlands, but no drinking water intakes within

15 miles downstream from the site. There are numerous protected plants identified as possibly existing in Dekalb and Henry counties.

A release has occurred to the soil. No residences, day care centers, or schools are within 200 feet of contamination. There are no workers onsite. There are no terrestrial sensitive environments onsite.

No release is suspected to the air. During the site reconnaissance, there were no odors emanating from the site and no blowing dust was observed.

The pathway of concern for the Chrome Wheel Concepts site is the surface water pathway. The nearest wetland is considered a primary sensitive environment. Additional investigation under CERCLA process is recommended.

REFERENCES

- 1. United States Geological Survey, 7.5 minute series topographic quadrangle maps of Georgia: Southeast Atlanta, 1993, edited 1995.
- 2. Average Annual Rainfall and Runoff in Georgia, 1941-1970, Robert Carter and Harold Stiles, Georgia Geologic Survey, 1983, Hydrologic Atlas 9.
- 3. Site Reconnaissance, Dekalb County, Chrome wheel Concepts, Georgia Environmental Protection Division, Field Notes from Terri Crosby May 7, 1999 and May 10, 1999.
- 4. EPA Notification Form 8700-12, submitted by Terek Green, 10/6/97.
- 5. Metal Finishing Guidebook Directory, Metals and Plastics Publications, Inc. Hackensack, NJ 07601, 1987.
- 6. Letter Report, Koppers Court Release, Conley, Dekalb County, Georgia, August 31, 1999, Prepared for Region 4 Emergency Response and Removal Branch by Tetra Tech EM Inc.
- 7. McConnell, K.I., and Abrams, C.E., 1984, Geology of the Greater Atlanta Region: Georgia Geologic Survey Bulletin 96, 127 p.
- 8. Brackett, D.A., Steele, W.M., Schmitt, T.J., Atkins, R.L., Kellam, M.F., and Lineback, J.A., Hydrogeologic Data from Selected Sites in the Piedmont and Blue Ridge Provinces, Georgia, Georgia Geologic Survey Information Circular 86, 1991.
- 9. Cressler, C.W., Thurmond, C.J. and Hester, W.G., 1983, Ground Water in the Greater Atlanta Region, Georgia, Georgia Geologic Survey Information Circular 63, 144 p.
- 10. Census of Population and Housing, 1990: Summary Tape File 3 on CD-ROM Georgia [machine-readable data files]/ prepared by the Bureau of the Census.- Washington: The Bureau [producer and distributor], 1992.
- 11. Clay Burdette, Environmental Engineer, Department of Natural Resources, conversation with Terri Crosby, Environmental Engineer, Hazardous Waste Branch, Georgia Environmental Protection Division, September 25, 2001. Re: Surface Water Intakes along South River.
- 12. Flood Insurance Rate Map, City of Swainsboro, Emanuel County, Georgia, February 4, 1988.
- 13. Department of Natural Resources website, Georgia, DNR -- Wildlife Resources Division, Fisheries Management Section, 2070 U.S. Hwy. 278, S.E., Social Circle, GA 30279.

- 14. Department of Natural Resources website, Georgia, DNR -- Wildlife Resources Division, Fisheries Management Section, 2070 U.S. Hwy. 278, S.E., Social Circle, GA 30279.
- 15. National Wetlands Inventory Map, U.S. Department of the Interior, Fish and Wildlife Service, Swainsboro, Twin City, and Stillmore Quadrangles
- 16. Georgia Department of Natural Resources website, Georgia, DNR- Wildlife Resources Division, Nongame Wildlife & Natural Heritage Section, Georgia Natural Heritage Program, 2117 US Hwy 278 SE, Social Circle, Georgia 30025.

CHROME WHEEL CONCEPTS SAMPLING ANALYTICAL DATA

TABLE 1: CHROME WHEEL CONCEPTS SAMPLING ANALYTICAL DATA (WASTE SAMPLES)

		·S	ample İdent	fication, Da	te, and Loca	tion	
	CW-W-01	CW-W-02	CW-W-03	CW-W-07	AC50917	AC50923	Regulatory
Parameters	ameters 5/6/99 5/10/99		5/10/99	5/10/99	5/10/99	5/10/99	Limit
	Contents of Garden Hose	Drum 45 inside bldg.	Drum 49 inside bldg.	Vat 53 inside bldg.	Container 5 inside bldg.	Container 26 inside bldg.	
	mg/L ¹²	mg/kg ⁱ	mg/kgl+	mg/kg	mg/L²	mg/L ²	TCLP mg/L
Antimony	1,400	ND	ND	ND	NA	NA	N/A
Arsenic	ND	ND	ND	ND	ND	ND	5.0
Chromium	romium 175,000 1.2		1.1	7.6	28	370	5.0
Copper	148	ND	ND	320 NA		NA	N/A
Lead	61.8	ND	ND	ND	ND ND		5.0
Mercury	ND	ND	ND	ND	NA	NA	0.2
Nickel	38.6	18	ND	ND	NA	48	N/A
Cyanide	0.05	ND	ND	ND	ND	Nd	N/A
pН	0.04	<1	<1	<1	9.6	2.1	<2.5 &>12.5
Hazardous Waste Codes that would apply to samples	D002; D007; D008	D002	D002	D002.	£ D007,	D002, D007	

Notes:

EPA Sampling Results

TCLP sample results

< Less than

mg/kg Milligrams per kilogram
mg/L Milligrams per liter
ND Not detected when analyzed

ND Not detected when analyzed NA Constituent not analyzed

N/A Not applicable-no regulatory limit has been established

TABLE 1: CHROME WHEEL CONCEPTS SAMPLING ANALYTICAL DATA (WASTE SAMPLES)

	Special Control	S	ample Identi	fication: Da	te and Loca	tion	
	AC50921 AC50915		AC50919	AC50916	AC50918	AC50920	* Regulatory
Parameters	5/10/99	5/10/99	5/10/99	5/10/99	5/10/99	5/10/99	Limit
	Container 19 inside bldg.	Container 1 inside bldg.	Container 6 inside bldg.	Container 8 inside bldg.	Container 9 inside bldg.	Container 13 inside bldg.	
	mg/L²	mg/kg	mg/kg 👔	mg/kg	mg/kg	mg/kg	TCLP mg/L
Antimony	NA	NA	NA	NA	NA	NA	N/A
Arsenic	ND	ND	ND	ND	37	ND	5.0
Chromium	mium 120,000 84		85	ND 3.7		1.0	5.0
Copper	NA 39		1.9	27 9.4		54,000	N/A
Lead	ND	11	ND	ND	25	ND	5.0
Mercury	NA	NA	NA	NA	NA	NA	0.2
Nickel	NA	30	ND	1.1	90,000	26	N/A
Cyanide	ND	ND	ND	ND	ND	ND	N/A
рН	<1.0	2.3	10.4	7.5	4.7	<1.0	<2.5 &>12.5
Hazardous Waste	D002, D007	D002				D002	
Codes that would apply to samples	DOOT						

Notes:

EPA Sampling Results

TCLP sample results

< Less than

mg/kg Milligrams per kilogram
mg/L Milligrams per liter
ND Not detected when analyzed
NA Constituent not analyzed

N/A Not applicable-no regulatory limit has been established

TABLE 1: CHROME WHEEL CONCEPTS SAMPLING ANALYTICAL DATA (WASTE SAMPLES)

		Ţ,	ample Identi	fication, Da	te and Loca	tion		
	AC50922	AC50924	AC50925	AC50914	AC50927	AC50926	Regulatory	
Parameters	5/10/99	5/10/99	5/10/99	5/10/99	5/10/99	5/10/99	Limit	
	Container 25 inside bldg.	Container 27 inside bldg.	Container 28 inside bldg.	Container 31 inside bldg.	Container 38 inside bldg.	Container 34 inside bldg.		
			mg	/kg			TCLP mg/L	
Antimony	NA	NA	NA	NA	NA	NA	N/A	
Arsenic	32	ND	ND	ND	ND	ND	5.0	
Chromium	romium 24 5.4		ND	2.3	ND	1.4	5.0	
Copper	per 2.9 28		3,800	69 1.3		37	N/A	
Lead	25	ND	84	ND	ND	5.0	5.0	
Mercury	NA	NA	NA	NA	NA	NA	0.2	
Nickel	72,000	90	12,000	43	1.8	19	N/A	
Cyanide	ND	ND	2,700	NA	ND	ND	N/A	
pН	4.5	2.3	12.8	<1.0	10.0	<1.0	<2.5 &>12.5	
Hazardous Waste Codes that would apply to samples	- Constant	D002	D002, F007	D002			Andrews of the second of the s	

Notes: EPA Sampling Results
TCLP sample results

< Less than

mg/kg Milligrams per kilogram
mg/L Milligrams per liter
ND Not detected when analyzed
NA Constituent not analyzed

N/A Not applicable-no regulatory limit has been established

TABLE 2: CHROME WHEEL CONCEPTS SAMPLING ANALYTICAL DATA (SOIL SAMPLES)

			Sample Iden	tification, Da	te, and Locat	ion	
	AC50544	AC50540	CW-SS-03	CW-SS-BAK	CW-CON-01	CW-CON-02	Regulatory
Parameters	5/6/99	5/5/99	<i>5/</i> 7/99	5/7/99	5 <i>[</i> 7/99	5 <i>[</i> 7/99	Limit
	Split sample from EPA CW-SS-02	Split sample from EPA CW-SS-01	Confluence	Background location 50 yards upstream of facility	Tarped area excavated	Additional excavated area	
	mg/kg	mg/L²	mg/kg ^t	mg/kg ¹ +	mg/kg ¹	mg/kg¹	TCLP mg/L
Antimony	NA	NA	ND	ND	ND	ND	N/A
Arsenic	ND	ND	ND	ND ND		ND	5.0
Chromium	44	38	99	89 67		120	5.0
Copper	35	ND	62	54	54 34 20		N/A
Lead	7.3	ND	23	ND	ND	7.8	5.0
Mercury	NA	NA	ND	ND	ND	ND	0.2
Nickel	4,000	13	71	110	94	210	N/A
Cyanide	NA	ND	ND	ND	ND	ND	N/A
рН	NA	2.3	7.04	5.93	6.54	5.33	<2.5 &>12.5
Hazardous Waste Codes that would apply to samples		D002, D007.				The state of the s	

Notes: 1 EPA Sampling Results

TCLP sample results

< Less than

mg/kg Milligrams per kilogram
mg/L Milligrams per liter
ND Not detected when applying

ND Not detected when analyzed NA Constituent not analyzed

N/A Not applicable-no regulatory limit has been established

TABLE 3: CHROME WHEEL CONCEPTS SAMPLING ANALYTICAL DATA (SEDIMENT SAMPLES)

	Sample Identification, Date, and Location									
	CW-SD-01	CW-SD-02	CW-SD-03	CW-SD-01	CW-SD-01 CW-SD-02 CW-SD-03					
Parameters			5	/5/99			Limit			
		Sediment san	iples on west s	ide of I-675 (Hi	ckson property)	ı				
	Tota	Total Analysis mg/kg ^{lt} Toxicity Characteristic Leachate Procedure mg/L ¹								
Antimony	ND	ND	ND	0.0232	ND	0.0221	N/A			
Arsenic	140	82	64	0.0259	ND	ND	5.0			
Chromium	330	260	130	1.25	45.6		5.0			
Copper	680	570	890	6.57	4	13	N/A			
Lead	25	ND	ND	ND	ND	ND	5.0			
Mercury	0.191	ND	ND	ND	ND	ND	0.2			
Nickel	420	310	420	7.9	14.5	8.15	N/A			
Cyanide	ND	3.6 mg/kg	ND				N/A			
pН	5.28	3.87	4.78				<2.5 &>12.5			
Hazardous Waste Codes that would apply to samples					D007					

Notes:

EPA Sampling Results

TCLP sample results

< Less than

mg/kg Milligrams per kilogram
mg/L Milligrams per liter
ND Not detected when analyzed
NA Constituent not analyzed

N/A Not applicable-no regulatory limit has been established

TABLE 4: CHROME WHEEL CONCEPTS SAMPLING ANALYTICAL DATA (SURFACE WATER SAMPLES)

	and the second second second	Sample Identification, Date, and Location									
	CW-SW-01	CW-SW-02	CW-SW-03	Regulatory							
Parameters		5/5/99		Limit							
	South end of drainage culvert	South end of drainage culvert	West side of I-675 where the drainage ditch comes out under the expressway								
		mg/L		TCLP mg/L							
Antimony	0.913	ND	ND	N/A							
Arsenic	ND	1.96	ND	5.0							
Chromium	9.1	2,430	253	5.0							
Copper	739	157	465	N/A							
Lead	0.351	ND	ND	5.0							
Mercury	0.00065	.001	0.00086	0.2							
Nickel	2,480	1,140	498	N/A							
Cyanide	0.01	0.057	ND	N/A							
рН	2.79	3.66	3.72	<2.5 &>12.5							
Hazardous Waste Codes that would apply to samples	D007	DO07	D007								

Notes: 1 EPA Sampling Results

TCLP sample results

< Less than

mg/kg Milligrams per kilogram mg/L Milligrams per liter

ND Not detected when analyzed NA Constituent not analyzed

N/A Not applicable-no regulatory limit has been established

REFERENCE 4

Notification Form

To save history for the Installation Name or Activity Information you MUST CHANGE the Received Date. **General Information:** 10/6/1997 Source of Information: N - Notification Received Date: Non-notifier: Send Extract to Public V Acknowledgement: I. Installation ID: **EPA** Activity Second GAR000012658 GA ID: Location: II. Name of Installation (Include company and specific site name): CHROME WHEEL CONCEPTS INC Installation Name: III. Location of Installation (Physical address not P.O. Box or Route) 4041 KOPPERS COURT Number: Street1: Street2: GA - Georgia CONLEY V 30288 State: City: Zip code: DE KALB - GA089 Ŧ County: State District: IV. Installation Mailing V Copy address from: Address: Street or P.O. KOPPERS COURT 4041 Number: Box: Street or P.O. Box: K CONLEY GA - Georgia 30288 City: State: Zip code: V. Installation Contact (Person to be contacted regarding waste activities at site): GREEN TEREK Last Name: First Name: 4043615200 PRESIDENT Job Title: Phone Number:

VI. Ir Addı		on Contact		Copy address from:	g					
		Street or P.O. Box:	4041 KOPPE	4041 KOPPERS COURT						
		Street or P.O. Box:								
City:	CONLEY		State: GA -	Georgia 💆 Zip code	30288					
City.	CONSE		State. Jun -	Zip code	·					
VII. C	Ownersh	 ip:		Copy address from:	E					
Owne No.:	r 1	Name of Leg		REK						
		Street or P.	O. 4041 KOP	PERS COURT						
		Street or P.								
City:	CONI			- Georgia Zip code: 302	88					
Phone Numb	1404.	615200	Land Type:	Private Owner Type:	Private 💆					
Chanc	ge Date:	\$			-					
Chang	ge Date.			· · · · · · · · · · · · · · · · · · ·						
VIII.	Type of	Federal Regulate	d Waste Activ	rity: To save history you MUST CH	IANGE the Red					
A. Ha	azardous	s Waste Activity	-							
	····	Туре		Federally Reg	ulated					
1.Gen	erator			la						
3 -	HQ - Co	onditionally Exen	npt SQG 星	R - RCRA Regulated						
		Description:								
2. Tra	nsporter				·					
Γ			<u> </u>							
		Description:								
	·	Mode of Transportati	on:	□ Air □ Rail □ Highway □ Wa	ter Other:					
3. Tre	ater, Store	er, Disposer								
J			Ę							
		Description:								
4 Hoz	ardous W	acta Fuel	··········	1						

te Activity: description: description: description: description: description: description: description: description:		Underground		ally Regulated
te Activity: rescription: gement Act Type rescription: rescription:	ivities:	Underground		ally Regulated
escription: gement Act Type escription:	ivities:	Underground		ally Regulated
escription: gement Act Type escription:	ivities:		Feder	ally Regulated
gement Act Type escription:	ivities:		Feder	ally Regulated
gement Act Type escription:			Feder	
Type escription:			Feder	
escription:			Feder	
eter				
eter				
s Shipment of				
	Used Oil to Off-Spe	ecification Burner		
	e Used Oil Meets th	_		
er Activity				Z
r/Re-refiner Ac	ctivity		S	3
sed Oil Burne	r	Б		
				Add/Update Codes
Type F	Type K	Type P	Type U	Туре Х
				<u> </u>
	Type F	Type F Type K	Type F Type K Type P	Type F Type K Type P Type U URL: /Handler

Chrome Wheels Site 4041 Koppers Ct Atlanta, Dekalb

LAT 33° 39' 45"N / LONG 84° 19' 25"W

	Pop	ulation	Hou	ıseholds		eholds stic Wel	House I Public			ulation estic We		ulation ic Water
RAD	Ring	Total	Ring	Total	Ring	Total	Ring	Total	Ring	Total	Ring	Total
.25	63	63	21	21	0	0	21	21	0	0	63	63
.5	182	245	60	81	0	O'	60	81	0	0	181	245
1	572	817	200	281	3	4	196	277	7	7	566	810
2	7664	8481	2441	2722	12	16	2429	2706	29	36	7635	8445
3	21776	30257	6998	9720	23	39	6975	9682	69	105	21707	30152
4	39482	69739	12595	22315	64	103	12531	22212	309	413	39174	69326
	,								•	•	1	

Source: Census of Populaton and Housing, 1990: Summary Tape File 3 on CD-ROM Georgia [machine-readable data files] / prepared by the Bureau of the Census. –Washington: The Bureau [producer and distributor], 1992.

REFERENCE 6

LETTER REPORT KOPPERS COURT RELEASE CONLEY, DEKALB COUNTY, GEORGIA

Prepared for

U.S. ENVIRONMENTAL PROTECTION AGENCY Region 4 Emergency Response and Removal Branch 61 Forsyth Street, SW, 11th Floor Atlanta, Georgia 30303

TDD No. : 04-9905-0002
Completion Date : August 31, 1999
Contract No. : 68-W5-0021
Prepared by : Tetra Tech EM Inc.
START Project Manager : Charles L. Berry

Telephone No. : (770) 717-2338
EPA Task Monitor : Francis Garcia
Telephone No. : (404) 562-8763

LETTER REPORT KOPPERS COURT RELEASE CONLEY, DEKALB COUNTY, GEORGIA

1.0 SITUATION

This document has been prepared in accordance with the requirements of Technical Direction Document (TDD) No. 04-9905-0002, which the U.S. Environmental Protection Agency (EPA) Region 4 assigned to the Tetra Tech EM Inc. Superfund Technical Assessment and Response Team (START). The overall scope of this TDD, monitored by On-Scene Coordinator (OSC) Francis Garcia, was to respond to the scene of a suspected release of plating wastes in Conley, Dekalb County, Georgia (see Figure 1). Specific tasks included preparing a health and safety plan, collecting multi-media sampling, conduct air monitoring, and perform contractor oversight.

2.0 BACKGROUND

On May 5, 1999, workers at the Hickson Timber Protection plant (Hickson) in Conley, Georgia, noticed an unusual color in water running through a culvert at the rear of the property located at 1579 Koppers Road, Conley, Georgia. After discovering a suspected point-source for the discoloration, Hickson contacted the Georgia Environmental Protection Division (EPD) which contacted EPA. START was tasked to respond to the release at about 1500 hours on May 5, 1999.

3.0 SUMMARY

The suspected point-source of the discoloration was the backyard of a small plating facility, Chrome Wheel Concepts, located at 4041 Koppers Court, Conley, Georgia (see Figure 2). An area of discoloration was evident in the soil, and it was covered with a tarp to protect it from the heavy rains falling at the time. The yard drains into a culvert running parallel to I-675, located directly behind the facility. The culvert flows south for approximately 100 yards, joins with another culvert flowing north, and turns under the expressway. The culvert emerges from under the expressway at the rear of the

Hickson facility and flows north along the east side of Koppers Court, eventually discharging into the Yellow River. Responding personnel suspected the discoloration in the water was waste from the plating facility. Response activities at the Koppers Court Release included sampling and removal actions. The details of each are described below.

3.1 SAMPLING

START sampled several different types of media including soil, water, sediment, and waste. All samples were collected at the direction of OSC Francis Garcia. The details are provided below.

3.1.1 Soil Sampling

START collected four soil samples during the response at locations illustrated on Figure 3. The samples were collected and sent to a START-contracted laboratory for analysis for priority pollutant metals, toxicity characteristic leachate procedures (TCLP) priority pollutant metals, total cyanide, and pH. Two soil samples were collected on May 5, 1999, in the area of the confluence of the two culverts. Analysis of these samples showed chromium levels of 4,000 parts per million (ppm) (see Figure 3). An additional soil sample, taken from this same area the next day after several inches of rain had fallen, contained chromium at 99 ppm.

START additionally collected a composite soil sample from the backyard of the Chrome Wheel facility in an area of stressed vegetation, as well as a background sample from an area 50 yards upstream of the culvert. Chromium levels in the background sample were at 89 ppm, while the composite sample from the area of stressed vegetation showed chromium levels of 51 ppm. For a complete listing of analytical results see Appendix D.

3.1.2 Sediment Sampling

START collected several sediment samples from the culvert on the Hickson Timber property. The

4

samples were collected and sent to AES Analytical Services (AES) for analysis for Priority pollutant metals, TCLP priority pollutant metals, total cyanide, and pH. On May 5, 1999, three sediment samples were collected from the first 150 feet of the culvert (see Figure 3). All three samples showed elevated levels of chromium and arsenic. On May 11, OSC Garcia tasked START to return to the site and resample the portion of culvert previously sampled, as well as sample further downstream, to see if any contamination remained after the heavy rains. Laboratory analysis reported high levels of both chromium and arsenic in the second round of sampling (see Appendix D).

3.1.3 Water Sampling

On May 5, 1999, START collected three water samples from the culvert. The samples were sent to AES for analysis for priority pollutant metals, total cyanide, and pH. Two samples were taken in the area of the confluence on the east side of the expressway, while the third was taken from the culvert on the west side of the expressway (downgradient). Samples CW-WS-02 and CW-SW-03 showed elevated levels of chromium at 2,430 ppm and 253 ppm, respectively.

3.1.4 Waste Sampling

On May 6, 1999, START collected sample CW-W-01 from a garden hose in the backyard of the Chrome Wheel facility (see Figure 4). This hose was suspected of being used to transfer waste from the facility to the culvert. Approximately 1.75 liters of a dark, reddish-brown liquid was removed from the hose and was split between START and the EPD. Laboratory analysis showed the sample to contain 175,000 ppm (17.5% by weight) chromium and 1,400 ppm antimony. This sample had a pH of 0.04.

On May 8, 1999, START, OSC Garcia, and members of the EPD made an entry into the Chrome Wheel Concepts facility (see Figure 4). The facility appeared closed, and all furniture and office equipment was removed. The only items left inside the building were various drums, 5-gallon buckets, and poly vats left in the plating line. OSC Garcia instructed START to collect waste samples from several vats and drums in the facility. START collected six waste samples from these containers and sent them to AES for

analysis for priority pollutant metals, total cyanide, and pH. Sample CW-W-04, taken from vat 19, showed elevated chromium levels of 550 ppm. Sample CW-W-05, taken from vat 28, showed total cyanide levels of 10,300 ppm. Samples CW-W-02, CW-W-03, CW-W-04 and CW-W-07 all had a pH below 2.

3.2 REMOVAL ACTIONS

During the response, International Technologies (IT), the Emergency and Rapid Response Services (ERRS) contractor, removed both soil and liquid from the release area. Hickson Timber privately contracted Fisher Industries to remove liquid from the culvert on the Hickson property. The details of the removal are described below.

3.2.1 Liquid Removal

On May 5, 1999, Fisher Industries removed several hundred gallons of liquid from the culvert on the Hickson property. The removal of this liquid was hampered by the heavy rains that fell on May 5 and 6. Fisher received permission from OSC Garcia to pump liquid from its vacuum truck into a poly storage tank brought on site by IT. On May 6, 1999, IT began pumping liquid from the culvert on the Chrome Wheel side of the expressway. It removed approximately 2,000 gallons of liquid from the confluence of the two culverts. The liquid was stored on site in a poly storage tank until disposal arrangements could be made. Initial plans were for IT to pressure-wash the culvert behind the Chrome Wheel facility and reclaim the runoff, but due to the substantial rains that fell, OSC Garcia decided this was unnecessary.

3.2.2 Soil Removal

On May 6, 1999, IT began removing soil from the backyard of the Chrome Wheel facility, in the area of the stressed vegetation (see Figure 5). An area approximately 40 feet by 40 feet square was initially removed, but green water seen leaching from the sides of the excavated area prompted OSC Garcia to direct the removal of additional soil. The initial excavation was increased to 2 feet below ground

surface, and a portion of the culvert bank was removed to the same depth until no further leachate was visible. START then collected two confirmation samples from the excavated areas. The confirmation sample taken from the excavated area next to the culvert, sample CW-CON-02, showed slightly elevated chromium levels of 120 ppm.

IT removed two roll-off containers of soil from the site, each containing approximately 20 cubic yards of soil. A third roll-off container containing limbs, plastic, and other various types of debris was also removed. IT collected composite samples of the contents to help develop a disposal profile for the waste. The soil and debris were taken to the BFI Hickory Ridge landfill in Conley, Georgia, for disposal as nonhazardous waste.

4.0 CONCLUSIONS

START was tasked to respond to a suspected release of plating wastes at the Chrome Wheel Concepts plating facility on Koppers Court, Conley, Georgia. START collected soil, water, sediment, and waste samples from the site. Elevated levels of chromium, antimony, and cyanide were found in the samples. IT and a private removal contractor removed approximately 2,500 gallons of suspected contaminated runoff water from the culvert. IT also excavated about 40 cubic yards of contaminated soil from the facility's backyard, and removed it from site to an appropriate disposal facility as nonhazardous waste.

Members of the Georgia EPD Criminal Investigation Division (CID) were on site to gather evidence for use in a possible state criminal action against the Chrome Wheel Concepts facility owner. Once the immediate threat to human health and the environment was removed, EPA released control of the site to EPD. No further EPA action at the site is anticipated. No further START activities are required under this TDD.

APPENDIX A
TABLE OF WITNESSES

(2 Sheets)

TABLE OF WITNESSES

Francis Garcia, On-Scene Coordinator U.S. Environmental Protection Agency, Region 4 Emergency Response and Removal Branch 61 Forsyth Street, SW, 11th Floor Atlanta, Georgia 30303 (404) 562-8763

Charles Berry, Project Manager
Michael Morgan
Parry Bhambra
Superfund Technical Assessment and Response Team, Region 4
Tetra Tech EM Inc.
1750 Corporate Drive, Suite 735
Norcross, Georgia 30093
(770) 717-2338

Scott Lyle, Response Manager International Technology Corporation 5445 Triangle Parkway Norcross, Georgia 30092 (770) 729-3900

John W. Hill, Investigative Officer Georgia Department of Natural Resources Atlanta Tradeport 4244 International Parkway Atlanta, Georgia 30354 (404) 362-4917

K. Scott Robertson, PG
Georgia Environmental Response Division
Emergency Response Team
7 Martin Luther King Jr. Drive, Suite 643
Atlanta, Georgia 30334
(404) 656-6905

William J. Baldwin, Vice President Operations & Industry Relations Hickson Corporation 1955 Lake Park Drive, Suite 250 Smyrna, Georgia 30080 (770) 801-6600

Stephen E. Cochran, Regional Sales Manager Fisher Industrial Service, Inc. Post Office Box 5410 Glencoe, Alabama 35905-0410 (256) 492-8340

APPENDIX B PHOTOGRAPHIC LOG

(13 Sheets)

OFFICIAL PHOTOGRAPH N_0 . 1 U.S. ENVIRONMENTAL PROTECTION AGENCY

Subject:

Sampling location CW-SW-01

Location:

Koppers Court Release

Conley, Dekalb County, Georgia

Orientation:

South

TDD Number:

04-9905-0002

Date:

May 6, 1999

Photographer:

Charles Berry, START

Witness:

Mike Morgan, START

OFFICIAL PHOTOGRAPH No. 2 U.S. ENVIRONMENTAL PROTECTION AGENCY

Subject: Sampling locations CW-SS-01 and CW-SW-02

Location: Koppers Court Release

Conley, Dekalb County, Georgia

Orientation: North

TDD Number: 04-9905-0002 **Date:** May 6, 1999

Photographer: Charles Berry, START Witness: Mike Morgan, START

OFFICIAL PHOTOGRAPH No. 3 U.S. ENVIRONMENTAL PROTECTION AGENCY

Subject:

Sampling location CW-SS-03

Location:

Koppers Court Release

Conley, Dekalb County, Georgia

Orientation:

North

TDD Number:

04-9905-0002

Date:

May 7, 1999

Photographer:

Charles Berry, START

Witness:

Francis Garcia, EPA

OFFICIAL PHOTOGRAPH No. 4 U.S. ENVIRONMENTAL PROTECTION AGENCY

Subject: Culvert emerging from under I-675 on Hickson property; sampling location CW-

SW-03

Location: Koppers Court Release

Conley, Dekalb County, Georgia

Orientation: East

TDD Number: 04-9905-0002 **Date:** May 6, 1999

Photographer: Charles Berry, START Witness: Mike Morgan, START

OFFICIAL PHOTOGRAPH No. 5 U.S. ENVIRONMENTAL PROTECTION AGENCY

Subject:

Culvert on Hickson property; samples CW-SD-01, -02, and -03 were collected from

this area on May 6, 1999, and samples CW-SD-04, -05, and -06 were collected on

May 11, 1999.

Location:

Koppers Court Release

Conley, Dekalb County, Georgia

Orientation:

South

TDD Number:

04-9905-0002

Date:

May 6, 1999

Photographer:

Charles Berry, START

Witness:

Mike Morgan, START

OFFICIAL PHOTOGRAPH No. 6 U.S. ENVIRONMENTAL PROTECTION AGENCY

Subject:

Culvert on Hickson property; samples CW-SD-01, -02, and -03 were collected from

this area on May 11, 1999

Location:

Koppers Court Release

Conley, Dekalb County, Georgia

Orientation:

West

TDD Number:

04-9905-0002

Date:

May 6, 1999

Photographer:

Charles Berry, START

Witness:

Mike Morgan, START

OFFICIAL PHOTOGRAPH No. 7 U.S. ENVIRONMENTAL PROTECTION AGENCY

Subject:

Hickson Timber contractor, Fisher Industries, pumping contents of vacuum truck

into poly tank

Location:

Koppers Court Release

Conley, Dekalb County, Georgia

Orientation:

East

TDD Number:

04-9905-0002

Date:

May 7, 1999

Photographer:

Charles Berry, START

Witness:

Francis Garcia, EPA

OFFICIAL PHOTOGRAPH No. 8 U.S. ENVIRONMENTAL PROTECTION AGENCY

Subject: Area of dead grass showing garden hose and storage tank behind Chrome Wheel

Concepts facility

Location: Koppers Court Release

Conley, Dekalb County, Georgia

Orientation: East

TDD Number: 04-9905-0002 **Date:** May 7, 1999

Photographer: Charles Berry, START Witness: Francis Garcia, EPA

OFFICIAL PHOTOGRAPH No. 9 U.S. ENVIRONMENTAL PROTECTION AGENCY

Subject:

IT excavating tarped area

Location:

Koppers Court Release

Conley, Dekalb County, Georgia

Orientation:

West

TDD Number:

04-9905-0002

Date:

May 7, 1999

Photographer:

Charles Berry, START

Witness:

Francis Garcia, EPA

OFFICIAL PHOTOGRAPH No. 10 U.S. ENVIRONMENTAL PROTECTION AGENCY

Subject:

Excavated area showing green leachate staining

Location:

Koppers Court Release

Conley, Dekalb County, Georgia

Orientation:

West

TDD Number:

04-9905-0002

Date:

May 7, 1999

Photographer:

Charles Berry, START

Witness:

Francis Garcia, EPA

OFFICIAL PHOTOGRAPH No. 11 U.S. ENVIRONMENTAL PROTECTION AGENCY

Subject:

Vat room of Chrome Wheel facility

Location:

Koppers Court Release

Conley, Dekalb County, Georgia

Orientation:

East

TDD Number:

04-9905-0002

Date:

May 8, 1999

Photographer:

Mike Morgan, START

Witness:

Charles Berry, START

OFFICIAL PHOTOGRAPH No. 12 U.S. ENVIRONMENTAL PROTECTION AGENCY

Subject:

Drums stored in facility; samples CW-W-02 and CW-W-03 were collected from

drums 45 and 49, respectively

Location:

Koppers Court Release

Conley, Dekalb County, Georgia

Orientation:

West

TDD Number:

04-9905-0002

Date:

May 8, 1999

Photographer:

Mike Morgan, START

Witness:

Charles Berry, START

OFFICIAL PHOTOGRAPH No. 13 U.S. ENVIRONMENTAL PROTECTION AGENCY

Subject:

Sample CW-W-07 collected from vat 53

Location:

Koppers Court Release

Conley, Dekalb County, Georgia

Orientation:

North

TDD Number:

04-9905-0002

Date:

May 8, 1999

Photographer:

Mike Morgan, START

Witness:

Francis Garcia, START

APPENDIX C LOGBOOK NOTES

(17 Sheets)

MEASUREMENT CONVERSIONS

	IF YOU KNOW	MULTIPLY	TO FIND
	LENGTH	BY	
			
	inches '	2.540	centimeters
	feel	30.480 0.914	centimeters
	yarda miles	1.609	meters kilometers
	millimeters	0.039	Inches
	centimeters	0.393	Inches
	meters	3.280	feet
	meters	1.093	yards
	kliometers	0.621	miles
	WEIGHT		
	ounces	28.350,	grams
	pounds	0.453	kilograms
	grama	0.035	ounces
	kilograms	2.204	pounds
	VOLUME		
	fluid ounces	29.573	milliters
	pints	0.473	liters
,	quarts	0.946	liters
	gations (U.S.)		hters
	milliliters	0.033	fluid ounces
	liters	1.056 0.264	quarts
	liters	0.204	gallons (U.S.)
	TEMPERATURE		
•	°C = (°F - 32)		
	<u> </u>	·	
		Decimals	Milli
:	Inches	oriooi	meters
•	1/16	.0052	1 5875
	1/8	.0104	3.1750
	1/8 1/16	.0104 .0156	3.1750 4.7625
			4.7625 6.3500
¥,	. 3√16	.0156	4.7625
**	1/4 1/4 2/16	.0156 .0208 .0260	4.7625 6.3500 7.9350
	1/4 1/4 2 2 2/16	.0156 .0208 .0260	4.7625 6.3500 7.9350 9.5250
はありま	1/4 1/4 1/6 1/2 1/2 1/2 1/2	.0156 .0208 .0260	4.7625 6.3500 7.9350
が 一般 一般 一般	1/4 1/4 2 2 2/16	.0156 .0208 .0260 .0313 .0417	4.7625 6.3500 7.9350 9.5250 12.700
新加速	1/4 1/4 1/4 1/6 1/8 1/2 1/2	.0156 .0208 .0260 .0313 .0417	4.7625 6.3500 7.9350 9.5250 12.700 15.875
	1/4 5/16 1/2 5/16 1/2 5/8 1/4 1/7/8	.0156 .0208 .0260 .0313 .0417 .0521 .0625	4.7625 6.3500 7.9350 9.5250 12.700 15.875 19.050 22.225
	7/16 1/4 5/16 1/2 5/8 1/2 5/8 1/4 7/8	.0156 .0208 .0260 .0313 .0417 .0521	4.7625 6.3500 7.9350 9.5250 12.700 15.875 19.050
100 100 100 100 100 100 100 100 100 100	1/4 5/16 1/2 5/16 1/2 5/8 1/4 1/7/8	.0156 .0208 .0260 .0313 .0417 .0521 .0625 .0729	4.7625 6.3500 7.9350 9.5250 12.700 15.875 19.050 22.225
THE WASHINGTON	7/16 1/4 5/16 1/2 5/8 1/2 5/8 1/4 7/8	.0156 .0208 .0260 .0313 .0417 .0521 .0625 .0729	4.7625 6.3500 7.9350 9.5250 12.700 15.875 19.050 22.225 25.400 50.800
· · · · · · · · · · · · · · · · · · ·	7/16 1/4 5/16 1/2 5/8 1/2 5/8 1/4 7/8	.0156 .0208 .0260 .0260 .0313 .0417 .0521 .0625 .0729	4.7625 6.3500 7.9350 9.5250 12.700 15.875 19.050 22.225 25.400 50.800 76.200
	7/16 1/4 5/16 1/2 5/8 1/2 5/8 1/2 5/8 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2	.0156 .0208 .0260 .0260 .0313 .0417 .0521 .0625 .0729 .0833 .1867 .2500 .3333	4.7625 6.3500 7.9350 9.5250 12.700 15.875 19.050 22.225 25.400 50.800 76.200 101.60 127.00
· · · · · · · · · · · · · · · · · · ·	1/4 5/16 1/4 5/16 1/2	.0156 .0208 .0260 .0260 .0313 .0417 .0521 .0625 .0729 .0833 .1867 .2500 .3333 .4167	4.7625 6.3500 7.9350 12.700 15.875 19.050 22.225 25.400 50.800 76.200 101.60 127.00
The state of the s	1/4 5/16 1/2 1/2 1/2 1/2 1/2 1/3 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4	.0156 .0208 .0260 .0260 .0313 .0417 .0521 .0625 .0729 .0833 .1867 .2500 .3333 .4167 .5000 .5833 .6667	4.7625 6.3500 7.9350 9.5250 12.700 15.875 19.050 22.225 25.400 50.800 76.200 101.60 127.00
THE STATE OF THE S	1/4 5/16 1/4 5/16 1/2	.0156 .0208 .0260 .0260 .0313 .0417 .0521 .0625 .0729 .0833 .1867 .2500 .3333 .4167 .5000 .5833 .6667 .7500	4.7625 6.3500 7.9350 9.5250 12.700 15.875 19.050 22.225 25.400 50.800 76.200 101.60 127.00 152.40 177.80 203.20 228.60
	1/4 5/16 1/4 5/16 1/2	.0156 .0208 .0260 .0260 .0313 .0417 .0521 .0625 .0729 .0833 .1867 .2500 .3333 .4167 .5000 .5833 .6667 .7500 .8333	4.7625 6.3500 7.9350 12.700 15.875 19.050 22.225 25.400 50.800 76.200 101.60 127.00 152.40 177.80 203.20 228.60 254.00
	1/4 5/16 1/4 5/16 1/2	.0156 .0208 .0260 .0260 .0313 .0417 .0521 .0625 .0729 .0833 .1867 .2500 .3333 .4167 .5000 .5833 .6667 .7500	4.7625 6.3500 7.9350 9.5250 12.700 15.875 19.050 22.225 25.400 50.800 76.200 101.60 127.00 152.40 177.80 203.20 228.60

04-S-0402 LEGAL DOCUMENT DO NOT DESTROY

Name Chrome Wheel Concepts ER

Lite in the Rain®
ALL-WEATHER WRITING PAPER

Address	Koppers Ct
Phone	
	199K Garcia (404) 562 8763 Chuck Beny (770) 7172778 Scott Lyle (770)-787-3834

"Rite in the Rain" - a unique all-weather writing surface created to shed water and to enhance the written image. Makes it possible to write sharp, legible field data in any kind of weather.

a product of

J. L. DARLING CORPORATION TACOMA, WA 98424-1017 USA

www.rlteintheraln.com

CONTENTS					
PAGE	REFERENCE	DATE			
					
· ·					
·					
					
	***	1			
		L			

1 Chrome Wheel Concepts 5/5/99
1700 START Leparts Noncross
1720 START calls OSC Garcia to inform
him that START is enroute in heavy traffic.
1750 START arrives and is asked by OSC
to pull water samples
1800 Photo 1 South Pool of chronic acid
Al a platas uses tales asses to
Above photos were taken approx. 50 yards _ 5W. of main bldg.
1800 STARY Derry pults samples from
drainage culvert approx. 50 yards SW,
of main bldg Samples lake lad CHISI
1810 START pulls water samples from ditch approx. 20ft from sample point
ditch approx 20ft from Jample point
LW SWE (North of Chilstof Dakeled
samples Ewaswa (See diagram page 3) 1820 Photo 3 Orient: S, Showing sample point Ewasway.
1820 Photo 3 Orient: Sy Showing sample
point CUISW-OL.
1821 Photo 4 Orient N, drainage ditch
showing flow of chromic acid.
1823 START Berry returns to collect
soil sample CWSSPI next to CWSW02.
mile Margon 5/5/99

CONTENTS					
PAGE	REFERENCE	DATE			
	•				
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
					

1720 START departs Noncross
1720 START calls OSC Garcia to inform
him that START is enroute in heavy traffic.
1750 START arrives and is asked by OSC
to pull water samples

1800 Photo I South Pool of chronic acid Above photos were taken approx. 50 yards . SW. of main bldg 1800 STARY berry pulls samples from drainage culvert approx. 50 yards SW, of maix bldg. Samples labeled CWISW.

1810 START pulls water samples from ditch approx. 20ft from sample point IW SWE (North of CWISH Filla Leled samples EW25War (See diagram page 3) point Choto 3 Orient S, Showing sample 1821 Photo 4 Orient N, drainage ditch showing flow of chromic acid. 1823) START Berry returns to collect soil sumple CWSSDI next to CWSW92.

mile "Morgon 5/5/99

5-5-99 2400 START places samples incoders + custody scals coolers. Cookis are Then placed in a STATE vehicle, EPA 187, for overnight storage. 5-6-99 0030 START Berry off Purday START moisen left office at 0000.

5-6-99 0845 START lood vehicle + departs 61 mg after. Weather: 65° HEAVY Thunderstons, 1000 START arrives on site, START Bury Mobil from Noicross offin. ITAT Morgan mobied directly how home, and arrived on site @ 0930. - OSC Garcia has instructed OH to wait out 1911, OH cannot world in letting. OH has brought a 316 paly rank, Vactively, + Sorbert booms, And a roll-off domp truck. - The drainege from the facility's padding lot has been blocked off with a sorbeat boon wrapped in plastic, Approximately 6" of 1,0 trapped behind 17. 1030 STILL Raining OH RPM Scott Lyle informs STORY what she southern Stretch of the east colvert, ie the portion below South of the confluence on the east side the part away from the facility is completely Plooded out. This has probably washed out the colvert on the west side of 675

5-6-99 1045 Break in Pain. OH dismanting trace in The Iconfeddless parkinglet 1050 John Hill, EPO CID arms on site. Note: SCOTT Lyle works for IT. OAM 15 NOW IT. iab- Chamblee Tucken & Bright Left 85 access Road smile on right AES 3781 Presidental Parkway. 1: START + OSC GARIN TOUR Er ram drainer - elitch from facility to confluence. Large amount of 40 Howing Culvar is dammeduply debris. 056 Garing instructs It to begin pumping water + removing delice from 1200 START Morgan offsik redeling

The state of the s

5-6-99 START'S Samples to HES, START Berry redains split somplis on site. Awaiting determination of whom will Vective samples - EPA or EM? El pumping liquid into 3Kgal polytank - That Berry Ismains on site for documentation 1230 Collected TIK gal of dark liquid Chish associal content from 1245 START at lunch 1315 START back on site. OSC wonts IT to excavate soil Is when trackface orrives. IT on wich now. 1330 IT back at world. Absorbant pods _ placed down (2300 los loss offe have been removed. Debris has heen nulled + showled out of culvert New removing debres in teach bas s and cutting limbs back to malhe way for trock be. 1400 Illen Whitt, Ilou site. 1420 START AIT RPM + Allea What + on Wiside culvert. Flow has increased to 1-2 cfs From yesterday's no-flow. Chhung

5-6-99	7.4
1430 Scott (206, 150N GA CPD	
returns to site,	
500 IT track hor arms = NSIK. 5740 T collecting CW-55-02	
in area at targed soil behind	
Cw facility, Sp+ corners + middle	
2 jors takon. EPD declines to split	<u>.</u>
this sample, but will talk others.	
-There is a wide area of yellowed	
grass in the middle of targed area.	
- Suspicion 's that operator used	
hose to drain gotside vat behind	
building the Causing the mease,	
1530 EPD collects can simple from	
Yellowed gross grea.	
of gorden hose. Contents of	
hose area dark brown/red liquid	
~ / Liter of it. START/SPD splin	
sample CW-W-01.	
1 Degins excevating 6" of	
tarpedares per OSC Garcia's instruction	S
160 OSC Garcia States he wants waste	
from hove analyzed.	·····

5-6-98 1815 CONT: Small arra of soil brock in culving Just S. of propertyline with Iron peddler. 1845 Small grow al so: / + rock removed, IT Covering Stockfile and securing - Security has been on site since 1700 and writing sirce 1910 IT pumping out val truck. All porsenell affrite START will Secure samples under seal in the rehicle ownight, and deliver them to the leb tomorrow maining at 8:30. Will Hon mob to site afterwards as per OSC Geroia. - Gute to I confedder's yard Locked by OSC Garcia before departore. 2005 START AT NOICE OF FREE Willinboad vehicle and scal samples in cooler inside locked value. 2020 STAT of for day

5-1-99 0820 59 105 deports Norms - Ffice for AES. 0865 Delivering samples to AES and deporting 0930 START asmus a sire. IT on site. Loading Stockpled Soil auto Non rollalt. 0945 START, SPA, IT PM's walk down to confluence. Copious funoff through area, Groth offer contloans - Culvert 1 vaning under 675 estimated - OSC Garage: Wait to except (Noty) sarphe. CW-55-01 data returned. START will ask lab for preliminary data to malk this obsterningtion. - Trackhoc will remain on site with roll offs until final determination of confluence arm determined, - If CW-55-01 is hot; START will resample. Thinking is that the rain hes grobably flushed area out. - START will take body sound sample 50 yds upstram of facility. - START will salle & continuous samples from epravated area

Colo

5-7-99 0945 cout: IT will handle all I +D sampling from rollofts. WEATHER Showers + T'stoms today. 1454 near 70 clearing late. at 0800 - 0900 torrential doungous in area. Currently no rain. 1030 START EAST Borry Irons Message for START Macharen to contact lab cone-ining CW-55-01 possibility of CW-55-03, and -CW-55-BAK(grovad) -Will page START Bury w 25-01 date. Beginning to cain again. -IT continues to Load 3 rd rolloft with excavated soil + trees, LATE SMTRY 0945 - OSC Gercia indicated that, due to the amount of water Howing down the culture from the facility, presson washing the culvert would be UN NECESSARY. -START will collect CW-55-6] from confluence area, but sample will not be delivered to lab 1345 - Rain ends. IT pumping water from parkinglot + suppel behind down into culout

and the same and an experimental and the same and the sam

5-7-99 1045 cont. below facility. 1100 START colleges background souple CW-55-BAK, from biside culvert 80 yd N. of excavated a roa. 1115 START collects soil sample, (w-55-03) to be sampled it cw ces and yard , Lew-ss-olishor. 1130 START hilling out stople paperwork. 1200 START at buch. Itiekson VOC truck arrives in six to remove sludge from the boston of their Vectouck, will be added to our solid waste as per OSC Garcia. 1700 STANT ON SITE, Spothe of STANT P. Madera while our No isto from lebyer. LATE ENTRY 1115 GA EPD Scott Robinson ON site. 1315 P. Gayror + one other rep. of ERD Haz waste division on size 1335 OSC GARCIO delivers welters access o crochest to David Framen of Iron Addlers, Irc. Well supplement oral agreenor given as

THE STATE OF THE PROPERTY OF T

" 5-7-99 1345 while chaining excepted airs, IT notices standing pool of greenish water. on west rule of exampted area. OSC Garcia warsaddetronal solex control additured excaution -green post 1455 David Frances of Iran Redders returns Signed Access Agreement to osc Gone 1920 IT rinsing out vac truck

Analysic visults: Cr= 2900 ppm for CW-55-01, CW-55-03 will be delived to lab 43 /21 OSCGERIA tody. Cr TCul Roiss-01 mas Offer, 0,47 pm CU = 230mTCLP 12.9,11 Lrb It 13 770-457-8177

5-7-99		
Photo106		-
# time sobj	P	o w
18 1425 Add'H exmunar	-	w FG
19 1425 IT der rinsing vectoch		6 —
	·	. •
		·
sampling Monday		
1 netal		
TUPSOLIAS		
f H	· ·	
-CN		
1500 START collecting Contra	rad that 5	ander
CW-CON-01 - CW-CON-03		
10-01		
- > pt composi	tes	
1600 EPA + GA CPD 9700 +		_
endry into building on	Monday	5-10.
STATI will sample in lead	0,900	Maspliss
Colban		

A SECTION SECTION

3-10-99 enter building in level B. Will investigate drums and vats. 1105 Berry + Whamba CXI + hot ZONE. - Decor great better at Steps -I+ ON bite. - Investigation at vat/down alea air monitoring shound no breathing hazards - CGI NOLEL reading, Or never below - FID 2.5ppn was hybret reading, but any mores tary. Constant brokerous reading of 0.5 ppm both intout Orager tube for HEN CN less than Stopper - START found 210 vats and 11 drums with samplable product. 220 5 ge/ Containers of vorious pore suspected unused product in ledeled Contriners. · Some drums have Nidle chloride, sulfunc and technical labels. - START consults wish osc Some will degrade to level BC for vat sunding Level B for drums

5-10-99 130 START will sample several vats per OSC Gareia as well as about 3 drums osc Garcia will enter bulding after lunch and delinear which vots to sample - START at lunch, will return to sik 300 START backer side Walting FOI EPD 1330 ECD ON SCH. EPt/SED DISCUSSING Saufling stratog 45 1345 START Suiting up love / B for sampling 130 START IN hot zone. 250 Garcia designating containers to sample # 19, 28, 38, 53, 45, 49. Yrats + 2 doms. 1445 Samples collected from divers Tirruq; 1520 See photolog -START completes sampling of vats: 19,28,38,+53. 1530 EPD continues to take samples from eviry container - START exiss hot zone, Begin de row + equipment clean/lood up, Sample paperwork. 160 STABT Off SIX to delang samples

5-10-99 1610: carr: to +ES 1650 Samples delivered to AFF AES 1730 STARTI bock at Norcass Office Unloading equip from truck. No site of s to morrow 5-11. OPS will resume upon receipt of analyrical. Samples delivered today have 5-day turnaround, START will inform OSC Garcia of any additional results as they are delivered 10 STAGT.

CDA.				
5-	11-99			
Sam	ple Su	nmery		··
Sangle	Date College	Medium	50/12?	location/Desigh
(W-SW-01	6-5	Surface Water	<u>Y</u>	Bhot Pool at continue
cw-5w-01	5-5	syrtice water	Υ	Block lool at continue
cw-sw-03	5-5	Surfice	У	Culvert under 675
CW-50-01	5-5	Schmont	1 1	culvert at 675
CW-SD-02	5-5	Sedmon	<u> </u>	culum Yamy from 675
				to Keppers Rd ON Halles
				Dioberth
CW-50-03	5-5	Sedner	<u>y</u>	Hickson property culrent
CHESS-OL	5-5	Sort		at Kepper Rd
CW-55-01	5-5	5011	<u>y</u>	Confluence
CW-55-02	5-6	50.1	NY	Composite from tarped great
ch-55-03	5-7	Soil	<i>N</i>	Confluence after min
CW- SS-BAK	5-7	50.1	~	Beckground Sound Not sike
(W-(ON-01	5-7	Soil		Confirmation tempoderce
CW-CON-OL	5-7	/، دی	N	Confirmation next to culumn
(w-w-01	5-6	waste	N Y	Contents at sorder hose
(v-w-0)	5-10	Wask	~ t	Drum 45
Cw-W-03	5-10	waste	NX	Drum 49
Cw-w-04	5-10	weste	NX	V9+19
a-w-05	5-10	weste	NX	Vat 28
cu-w-06	5-10	waste	NX	V4+38
cu-u-07	5-LO	wasse	N X	V9+53
* 466	tody Sam	oled by G	458D. 51	Dielliced our semple.
	_ ′	1		-

TUESDAY MAN 10 100	
THESDAY, MAY 18, 1999	S M Split LOCATION
	CW -50-01 5/18/19 DEPLYENT YES SHE MAGRA
Sam 0940 JOHN WILLHT UNSUTE	CW-50-02/5/18/11 SEDIMENT YES
CW-S SIGNED IN ES SECURITY.	CW-SD-03 5 12 19 SEDIMENT YES
CW: 1000 FRANK GARCIA ONSITE, (OSC)	CW-5D-64 5 18/99 / SEOTHENT YES
CW-1 OSC & START TOUR FACILITY OSC	CW-50-05 5 10/19 SEDIMENT YES
CW- BRIEFS START ON PREVIOUS SITE	CW-SD-06 5/18/99 BEDINET /48
CwACTIVITIES.	
1025 OSC & STALT 60 TO HICKSON	en de la companya de La companya de la co
COMPANY TO SAMPLE RUN OFF FROM	
CW- C HROME WHEEL PLANNG.	
CWC - OSC THSILED STALT TO TAKE 6	
CW- SEDIMENT SAMPLES FOR TWO	
CW. JOINED RUN OFF DITCHES, ON THE	
CW HICKMAN PROPERTIES.	
CW- 1100 OSC TASKED START TO SPLIT SAMPLES	
COLL WHICK STAN (CINDY STORELLI).	
CW AFTER SAMPLING START WILTAKE	
(W- SAMPLES TO THE LAB W/ 24 HOUR TURN	
W-1 AKOUND - RUNDER DITCH	· · · · · · · · · · · · · · · · · · ·
CW- 675	The second secon
Land State of the	
SD-06 + FT	
	A CONTRACT OF THE CONTRACT OF
Car House House	
60.00	The second secon
Man BILZ	
RUNI DUF DITCH + 50-01	

e. Prillet Banka

APPENDIX D
ANALYTICAL REPORT

(9 Sheets)

MEMORANDUM

TO:

Charles Berry

Superfund Technical Assessment and Response Team (START) Project Manager

FROM:

Paula MacLaren

START Quality Assurance Officer

THROUGH:

R. Steve Pierce

START Leader, U.S. Environmental Protection Agency (EPA) Region 4

SUBJECT:

Koppers Court Release Emergency Response Analytical Data

Technical Direction Document No. 04-9905-0003

DATE:

June 4, 1999

Analytical Environmental Services, Inc., analyzed samples collected on May 5, 1999, at the Koppers Court Release Emergency Response in Conley, Georgia. The samples were analyzed for the following parameters:

- Priority pollutant metals
- Total cyanide
- pH

The analytical data packages were received within the required 24-hour and 1-week turnaround time periods. The following quality control samples were analyzed:

- Priority pollutant metal analysis:
- Total cyanide analysis:
- pH analysis:

A summary of the sample data is presented in Tables 1, 2, and 3.

TABLE 1

KOPPERS COURT RELEASE EMERGENCY RESPONSE ANALYTICAL DATA

Waste Samples

		11 430	e Samples					
Parameter	Sample Identification, Date, and Location							
	CW-W-01	CW-W-02	CW-W-03	CW-W-04	CW-W-05	CW-W-06	CW-W-07	
	05/06/99	05/10/99	05/10/99	05/10/99	05/10/99	05/10/99	05/10/99	
	Contents of garden hose	Drum 45	Drum 49	Vat 19	Vat 28	Vat 38	Vat 53	
Priority Pollutant Metal	mg/L	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	
Antimony	1,400	ND	ND	ND	5.7	ND	ND	
Arsenic	ND	ND	ND	ND	ND	· ND	ND	
Beryllium	ND	ND	ND	ND	ND	ND	ND	
Cadmium	ND	ND	ND	ND	ND	ND	ND	
Chromium	175,000	1.2	1.1	550	9.1	3.4	7.6	
Copper	148	ND	ND	ND	4,700	2	320	
Lead	61.8	ND	ND	4	66	ND	ND	
Mercury	ND	ND	ND	ND	ND	ND	ND	
Nickel	38.6	18	ND	ND	13,000	ND	ND	
Selenium	ND	ND	ND	ND	ND	ND	ND	
Silver	ND	ND	ND	ND	ND	ND	ND	
Thallium	24.3	ND	ND	ND	ND	ND	ND	
Zinc	86.4	ND	ND	ND	24,000	ND	6.76.7	
General Chemistry					ngagnio dell'is Chan Paristat			
Total cyanide (mg/kg)	0.051	ND	ND	ND	10,300	1.3	ND	
рН	0.04	< 1	< 1	1.5	11	9	< 1	
			<u> </u>					

Notes: < Less than

mg/kg Milligram per kilogram mg/L Milligram per liter ND Not detected 1 Milligram per liter

Analytical Environmental Services, Inc., performed the sample analyses.

TABLE 2

KOPPERS COURT RELEASE EMERGENCY RESPONSE ANALYTICAL DATA

Soil Samples

Parameter	Sample Identification, Date, and Location						
	CW-SS-01	CW-SS-02	CW-SS-03	CW-SS-BAK	CW-CON-01	CW-C0N-02	
	05/05/99	05/06/99	05/07/99	05/07/99	05/07/99	05/07/99	
	N/A	Under tarp behind building	Confluence	50 yards upstream of facility	Tarped area excavated	Additional excavated area	
Priority Pollutant Meta	l (mg/kg)						
Antimony	ND	ND	ND	ND	ND	ND	
Arsenic	ND	ND	ND	ND	ND	ND	
Beryllium	ND	ND	ND	ND	ND	ND	
Cadmium	ND	ND	ND	ND	ND	ND	
Chromium	4,000	51	99	89	67	120	
Copper	320	27	62	54	34	20	
Lead	17	ND	23	ND	ND	7.8	
Mercury	ND	ND	ND	ND	ND	ND	
Nickel	430	830	71	110	94	210	
Selenium	ND	ND	ND	ND	ND	ND	
Silver	ND	ND	ND	ND	ND	ND	
Thallium	ND	ND	ND	ND	ND	ND	
Zinc	63	33	120	32	28	20	
General Chemistry			<u> </u>			A company	
Total cyanide (mg/kg)	ND	ND .	ND	ND	ND	ND	
pН	4.36	5.29	7.04	5.93	6.54	5.33	
TCLP Priority Pollutan	t Metal (mg/l)e -				t de la companya de l	
Antimony	ND	0.0309	0.0228	NA	0.0211	0.0245	
Arsenic	ND	ND	ND	NA	ND	ND	
Beryllium	NĎ	ND	ND.	NA	ND	ND	
Cadmium	ND	ND	ND	NA	ND	ND	
	1	L .	1.	l	l	1	

TABLE 2 (continued)

KOPPERS COURT RELEASE EMERGENCY RESPONSE ANALYTICAL DATA

Soil Samples

Parameter		Sample Identification, Date, and Location						
	CW-SS-01	CW-SS-02	CW-SS-03	CW-SS-BAK	CW-CON-01	CW-C0N-02		
	05/05/99	05/06/99	05/07/99	05/07/99	05/07/99	05/07/99		
	N/A	Under tarp behind building	Confluence	50 yards upstream of facility	Tarped area excavated	Additional excavated area		
TCLP Priority Pollut	ant Metal (mg/I) (continued)						
Chromium	0.4	ND	0.012	NA	0.0115	ND		
Copper	12.9	0.0222	0.0226	NA	0.25	0.0128		
Lead	ND	ND	ND	NA	ND	0.0204		
Mercury	ND	ND	ND	NA	ND	ND		
Nickel	8.07	19.1	0.134	NA	1.58	5.92		
Selenium	ND	ND	ND	NA	ND	ND		
Silver	ND	ND	ND	NA	ND ·	ND		
Thallium	ND	ND	ND	NA	ND	ND		
Zinc	1.07	0.0419	0.528	NA	0.0621	0.0447		

Notes: mg/kg Milligram per kilogram

mg/L Milligram per liter
NA Not analyzed
N/A Not applicable
ND Not detected

TCLP Toxicity characteristic leaching procedure

Analytical Environmental Services, Inc., performed the sample analyses.

TABLE 3A

KOPPERS COURT RELEASE EMERGENCY RESPONSE ANALYTICAL DATA

Sediment Samples Collected on May 5, 1999

Parameter		Sample Identification	
	CW-SD-01	CW-SD-02	CW-SD-03
Priority Pollutant Metal	(mg/kg)		
Antimony	ND	ND	ND
Arsenic	140	82	64
Beryllium	ND	ND	ND
Cadmium	ND	ND	ND
Chromium	330	260	130
Copper	680	570	890
Lead	25	ND	ND
Mercury	0.191	ND	ND
Nickel	420	310	420
Selenium	ND	ND	ND
Silver	ND .	ND	ND
Thallium	ND	ND	· ND
Zinc	150	72	87
General Chemistry			
Total cyanide (mg/kg)	ND	• 3.6	ND
рН	5.28	3.87	4.78
TCLP Priority Pollutant	Metal (mg/L)		en e
Antimony	0.0232	ND	0.0221
Arsenic	0.0259	ND	ND
Beryllium	ND	ND	ND
Cadmium	ND	ND	ND

TABLE 3A (continued)

KOPPERS COURT RELEASE EMERGENCY RESPONSE ANALYTICAL DATA

Sediment Samples Collected on May 5, 1999

Parameter		Sample Identification				
	CW-SD-01	CW-SD-02	CW-SD-03			
TCLP Priority Pollut	ant Metal (mg/L) (continued).					
Chromium	1.25	45.6	0.422			
Copper	6.57	4	13			
Lead	ND	ND	ND			
Mercury	ND	ND	ND			
Nickel	7.9	14.5	8.15			
Selenium	ND	ND	ND			
Silver	ND	ND	ND			
Thallium	ND	ND	ND			
Zinc	1.41	0.447	1.08			

Notes: mg/kg Milligram per kilogram

mg/L Milligram per liter

CW Custom Wheel Concepts

ND Not detected SD Sediment

TCLP Toxicity characteristic leaching procedure

Analytical Environmental Services, Inc., performed the sample analyses.

TABLE 3B

KOPPERS COURT RELEASE EMERGENCY RESPONSE ANALYTICAL DATA

Sediment Samples Collected on May 18, 1999

Parameter	ر به دون	Transfer of the second of the	Sample Ide	ntification		
	SD-01	SD-02	SD-03	SD-04	SD-05	SD-06
Priority Pollutant Metal	(mg/kg)					
Antimony	ND	ND	ND	ND	ND	ND
Arsenic	23.6	125	307	111	64.9	10.4
Beryllium	ND	ND	ND	ND	ND	ND
Cadmium	ND	ND	ND	ND	ND	ND
Chromium	94.7	77.1	186	189	311	630
Copper	28.3	372	351	1,680	493	2,820
Lead	10.9	ND	12.1	9.17	7.17	12
Mercury	0.121	0.179	0.406	0.734	0.458	0.749
Nickel	63.2	363	441	787	531	1,680
Selenium	ND	ND	ND	ND	ND	ND
Silver	ND	ND	ND	ND	ND	ND
Thallium	ND	ND	ND	ND	ND	ND
Zinc	24.6	63.7	216	142	69.4	125
General Chemistry						
Total cyanide (mg/kg)	ND	ND	ND	ND	ND	ND
рН	6.95	6.47	7.14	5.45	4.61	4.94

Notes: mg/kg Milligram per kilogram
ND Not detected

ND Not detecte SD Sediment

Analytical Environmental Services, Inc., performed the sample analyses.

TABLE 4

KOPPERS COURT RELEASE EMERGENCY RESPONSE ANALYTICAL DATA

Water Samples Collected on May 5, 1999

Parameter		Sample Identification			
	CW-SW-01	CW-SW-02	CW-SW-03		
Priority Pollutant Metal (1	mg/L)	Land Control			
Antimony	0.913	ND	ND		
Arsenic	ND	1.96	ND		
Beryllium	ND	ND	ND		
Cadmium	ND	ND	ND		
Chromium	9.1	2,430	253		
Copper	739	157	465		
Lead	0.351	ND	ND		
Mercury	0.00065	0.001	0.00086		
Nickel	2,480	1,140	498		
Selenium	ND	ND	ND		
Silver	ND .	ND	ND		
Thallium	ND	ND	ND		
Zinc	- 2.19	3.11	28.4		
General Chemistry			The second se		
Total cyanide (mg/L)	0.01	0.057	ND		
pH	2.79	3.66	3.72		

Notes: mg/L Milligram per liter

CW Custom Wheel Concepts

ND Not detected SW Surface water

Analytical Environmental Services, Inc., performed the sample analyses.

NATIONAL FLOOD INSURANCE PROGRA

FLOOD INSURANCE RATE MAP

DE KALB COUNTY,

GEORGIA

(UNINCORPORATED AREAS)

PANEL 100 OF 150 (SEE MAP INDEX FOR PANELS NOT PRINTED)

COMMUNITY-PANEL NUMBER 130065 0100 B EFFECTIVE DATE: MAY 15, 1980

U.S. DEPARTMENT OF HOUSING
AND URBAN DEVELOPMENT
FEDERAL INSURANCE ADMINISTRATION

APPENDIX A

OMB Approval Number: 2050-0095 Approved for Use Through: 1/92

PA Scoresheets

Site Name: CHROME WHEEL CONCEPTS

CERCLIS ID No.: GAR 0000 12658

Street Address: 4041 Koppers Court

City/State/Zip: Concey, GA 30288

Investigator: TERRI CROSBY

Agency/Organization: GA EPD

Street Address: 205 BUTLER ST SE

City/State/Zip: ATLANTA, GA 30334

Date: SEPTEMBER 2001

INSTRUCTIONS FOR SCORESHEETS

Introduction

This scoresheets package functions as a self-contained workbook providing all of the basic tools to apply collected data and calculate a PA score. Note that a computerized scoring tool, "PA-Score," is also available from EPA (Office of Solid Waste and Emergency Response, Directive 9345.1-11). The scoresheets provide space to:

- ! Record information collected during the PA
- ! Indicate references to support information
- ! Select and assign values ("scores") for factors
- ! Calculate pathway scores
- ! Calculate the site score

Do not enter values or scores in shaded areas of the scoresheets. You are encouraged to write notes on the scoresheets and especially on the Criteria Lists. On scoresheets with a reference column, indicate a number corresponding to attached sources of information or pages containing rationale for hypotheses; attach to the scoresheets a numbered list of these references. Evaluate all four pathways. Complete all Criteria Lists, scoresheets, and tables. Show calculations, as appropriate. If scoresheets are photocopy reproduced, copy and submit the numbered pages (right-side pages) only.

GENERAL INFORMATION

Site Description and Operational History: Briefly describe the site and its operating history. Provide the site name, owner/operator, type of facility and operations, size of property, active or inactive status, and years of waste generation. Summarize waste treatment, storage, or disposal activities that have or may have occurred at the site; note also if these activities are documented or alleged. Identify probable source types and prior spills. Summarize highlights of previous investigations.

Probable Substances of Concern: List hazardous substances that have or may have been stored, handled, or disposed at the site, based on your knowledge of site operations: Identify the sources to which the substances may be related. Summarize any existing analytical data concerning hazardous substances detected onsite, in releases from the site, or at targets.

GENERAL INFORMATION (continued)

Site Sketch: Prepare a sketch of the site (freehand is acceptable). Indicate all pertinent features of the site and nearby environs, including: waste sources, buildings, residences, access roads, parking areas, drainage patterns, water bodies, vegetation, wells, sensitive environments, etc.

GENERAL INFORMATION

Site Description and Operational History:

The Chrome Wheel Concepts site is located at 4041 Koppers Court and is located to the southeast of the city of Atlanta in Conley, Georgia. The geographic coordinates are 84°19′25" W longitude and 33°39′45" N latitude (Reference 1).

The total area of the Chrome Wheel Concepts site is approximately one acre. Access to the site is from Koppers Court. Koppers Court is oriented north-south and forms the eastern property boundary. Interstate 675 forms the western boundary; an industrial facility, Iron Peddlers, forms the southern boundary; and a wooded lot forms the northern property boundary to the Chrome Wheel Concepts site. Terek Green was the operator of the Chrome Wheel Concepts site. He was purchasing the property from George Tippen. Terek Green defaulted in payments to George Tippen and the property was in the middle of foreclosure.

Chrome Wheel Concepts was a manufacturing facility that performed decorative chrome plating on wheel accessories. The actual operations that took place at Chrome Wheel Concepts are unknown. Chrome Wheel Concepts according to Mr. Green ceased operation around the first quarter of 1999. However, on May 5, 1999, workers at a neighboring property noticed an unusual color in water running through a culvert at the rear of the property located at 1579 Koppers Road, Conley, Georgia. After discovering a suspected point source for the discoloration, the workers contacted the Emergency Response Program of the Georgia Environmental Protection Division. The suspected point source of the discoloration was the Chrome Wheel Concepts facility.

The Georgia Emergency Response Program contacted the Region 4 Emergency Response and Removal Branch for assistance in preventing the immediate threat of continuing migration of the contaminants to the surface water bodies. The response activities included sampling and removal actions. The Region 4 and the Georgia Emergency Response teams took samples of the waste found inside and outside of the building, of the soil, of the sediment, and of the surface water.

Probable Substances of Concern:

(Previous investigations, analytical data)

The contaminants of concern are antimony, arsenic, chromium, copper, lead, mercury, nickel, cyanide, and the pH of the solutions. The sample results documented that a release had occurred.

GENERAL INFORMATION (continued)

SOURCE EVALUATION

- ! Number and name each source (e.g., 1. East Drum Storage Area, 2. Sludge Lagoon, 3. Battery Pile).
- ! Identify source type according to the list below.
- ! Describe the physical character of each source (e.g., dimensions, contents, waste types, containment, operating history).
- ! Show waste quantity (WQ) calculations for each source for appropriate tiers. Refer to instructions opposite page 5 and PA Tables 1a and 1b. Identify waste quantity tier and waste characteristics (WC) factor category score (for a site with a single source, according to PA Table 1a). Determine WC from PA Table 1b for the sum of source WQs for a multiple-source site.
- ! Attach additional sheets if necessary.
- ! Determine the site WC factor category score and record at the bottom of the page.

Source Type Descriptions

<u>Landfill:</u> an engineered (by excavation or construction) or natural hole in the ground Into which wastes have been disposed by backfilling, or by contemporaneous soil deposition with waste disposal, covering wastes from view

<u>Surface Impoundment:</u> a topographic depression, excavation, or diked area, primarily formed from earthen materials (lined or unlined) and designed to hold accumulated liquid wastes, wastes containing free liquids, or sludges that were not backfilled or otherwise covered during periods of deposition; depression may be dry if deposited liquid has evaporated, volatilized or leached, or wet with exposed liquid; structures that may be more specifically described as lagoon pond, aeration pit, settling pond, tailings pond, sludge pit, etc.; also a surface impoundment that has been covered with soil after the final deposition of waste materials (i.e., buried or backfilled).

Drums: portable containers designed to hold a standard 55-gallon volume of wastes.

<u>Tanks and Non-Drum Containers:</u> any stationary device, designed to contain accumulated wastes, constructed primarily of fabricated materials (such as wood, concrete, steel, or plastic) that provide structural support; any portable or mobile device in which waste is stored or otherwise handled.

<u>Contaminated Soil:</u> soil onto which available evidence indicates that a hazardous substance was spilled, spread, disposed, or deposited.

<u>Pile:</u> any non-containerized accumulation above the ground surface of solid, non-flowing wastes; includes open dumps. Some types of piles are: <u>Chemical Waste Pile</u> -- consists primarily of discarded chemical products, byproducts, radioactive wastes, or used or unused feedstocks; <u>Scrap Metal or Junk Pile</u> -- consists primarily of scrap metal or discarded durable goods such as appliances, automobiles, auto parts, or batteries, composed of materials suspected to contain or have contained a hazardous substance; <u>Tailings Pile</u> -- consists primarily of any combination of overburden from a mining operation and tailings from a mineral mining, beneficiation, or processing operation; <u>Trash Pile</u> -- consists primarily of paper, garbage, or discarded non-durable goods which are suspected to contain or have contained a hazardous substance.

<u>Land Treatment:</u> landfarming or other land treatment method of waste management in which liquid wastes or sludges are spread over land and tilled, or liquids are injected at shallow depths into soils.

Other: a source that does not fit any of the descriptions above; examples include contaminated building, ground water plume with no identifiable source, storm drain, dry well, and injection well.

SOURCE EVALUATION

1	Source Name: RELEASE ED SOIL FROM ED RELEASE	Source Waste Quantity (WQ) Calculations: ENTIRE SITE APPROXIMATELY ONE ACRE AREA OF RELEASE 40 ft × 40 ft
Source No.: Source Description:	Source Name:	Source Waste Quantity (WQ) Calculations:
Source No.: Source Description:	Source Name:	Source Waste Quantity (WQ) Calculations:
		Site WC:

WASTE CHARACTERISTICS (WC) SCORES

WC, based on waste quantity, may be determined by one or all of four measures called "tiers": constituent quantity, wastestream quantity, source volume, and source area. PA Table 1a (page 5) is divided into these four tiers. The amount and detail of information available determine which tier(s) to use for each source. For each source, evaluate waste quantity by as many of the tiers as you have information to support, and select the result that gives you the highest WC score. If minimal, incomplete, or no information is available regarding waste quantity, assign a WC score of 18 (minimum).

PA Table 1a has 6 columns: column 1 indicates the quantity tier; column 2 lists source types for the four tiers; columns 3, 4, and 5 provide ranges of waste amount for <u>sites with only one source</u>, which correspond to WC scores at the top of the columns (18, 32, or 100); column 6 provides formulas to obtain source waste quantity (WQ) values at <u>sites with multiple sources</u>.

To determine WC for sites with only one source:

- 1. Identify source type (see descriptions opposite page 4).
- 2. Examine all waste quantity data available.
- 3. Estimate the mass and/or dimensions of the source.
- 4. Determine which quantity tiers to use based on available source information.
- Convert source measurements to appropriate units for each tier you can evaluate for the source.
- 6. Identify the range into which the total quantity falls for each tier evaluated (PA Table 1a).
- 7. Determine the highest WC score obtained for any tier (18, 32, or 100, at top of PA Table 1a columns 3, 4, and 5, respectively).
- 8. Use this WC score for all pathways.*

To determine WC for sites with multiple sources:

- 1. Identify each source type (see descriptions opposite page 4).
- 2. Examine all waste quantity data available for each source.
- 3. Estimate the mass and/or dimensions of each source.
- 4. Determine which quantity tiers to use for each source based on the available information.
- 5. Convert source measurements to appropriate units for each tier you can evaluate for each source.
- 6. For each source, use the formulas in column 6 of PA Table 1a to determine the WQ value for each tier that can be evaluated. The highest WQ value obtained for any tier is the WQ value for the source.
- 7. Sum the WQ values for all sources to get the site WQ total.
- 8. Use the site WQ total from step 7 to assign the WC score from PA Table 1b.
- Use this WC score for all pathways.

The WC score is considered in all four pathways. However, if a primary target is identified for the ground water, surface water, or air migration pathway, assign the determined WC or a score of 32, whichever is greater, as the WC score for that pathway.

PA TABLE 1: WASTE CHARACTERISTICS (WC) SCORES

PA Table 1a: WC Scores for Single Source Sites and Formulae for Multiple Source Sites

7			SOURCE SITES (assigned WC	scores)	MULTIPLE SOURCE
1 组 果	SOURCE TYPE	WC = 18	WC = 32	WC = 100	Formula for Assigning Source WQ Values
- Bec tagou	N/A	≰100 lb	> 100 to 10,000 lb	> 10,000 lb	1b + 1
\$ comments 4	N/A	≤500,000 ib	> 600,000 to 50 million lb	> 50 mi#on to	ib + 5,000
	Landfill	≤8.75 million ft ³ ≤250,000 yd ³	> 6.75 million to 675 million ft ⁸ > 250,000 to 25 million ye ²	> 675 million ft ³ > 25 million yd ³	ft ³ + 67,500 yd ³ + 2,500
	Surface Impoundment	≤6,750 ft ⁸ ≤250 yd ⁸	> 6,750 to 676,000 ft ³ > 250 to 25,000 ye ^g	> 675,000 ft ³ > 28,000 yd ⁶	ft ³ + 67.5 yd ⁹ + 2.5
v	Drums ·	≤1,000 drume	>1,000 to 100,000 drums	> 100,000 drume	drums + 10
r O	Tanks and non- drum containers	≾50,000 gailons	> 50,000 to 5 million gallons	>E millon gallons	gallons + 500
M E	Contaminated soil	≤6.75 million ft ³ ≤250,000 yd ³	> 6.75 million to 675 million ft ³ > 250,000 to 25 million ya ⁴	>675 million ft ³ > 25 million yd ⁴	ht ³ + 67,500 yd ³ + 2,500
	Pile	≤8,750 ft ³ ≤250 yd ³	> 0,750 to 675,000 ft ² > 250 to 25,000 yd ²	>675,000 ft ² >25,000 yd ³	$H^2 + 87.5$ $yd^2 + 2.5$
	Other	≤8,750 ft ³ ≤250 yd ³	>4,750 to 675,000 ft ³ > 250 to 26,000 yd ³	> 675,000 ft ³ > 25,000 yd ²	$ft^3 + 67.5$ $yd^3 + 2.5$
	Landfill	≤340,000 ft ³ ≤7.8 eares	>340,000 to 34 millen ft ³ >7.8 to 790 serse	>34 million ft ³ >790 sores	ft ² + 3,400 acras + 0.078
	Surface impoundment	≤1,300 ft ² ≤0.028 acres	>1,300 to 130,000 ft ² >0.028 to 2.9 scree	>130,000 ft ² >2,9 eares	ft ² + 13 acres + 0.00029
ARE	Contaminated soil	≤3.4 million ft ² ≤78 ecres	>3.4 million to 340 million ft ³ >78 to 7,800 scres	>340 million ft ^d >7,800 ecree	ht + 34,000 ecres + 0.78
•	Pile*	≤1,300 ft ² ≤0.029 scres	>1,300 to 130,000 ft ^d >0.029 to 2.8 acres	>130,000 ft ² >2,9 ecres	ft ² + 13 acres + 0.00029
	Land treatment	±27,000 ft ³ ≤0.62 scree	>27,000 to 2.7 million ft ⁸ >0.82 to 62 acres	>2.7 million ft ² >62 sures	ft ² + 270 acres + 0.0062

1 ton = 2,000 fb = 1 yd² = 4 drums = 200 gallone

* Use area of land surface under pile, net surface area of pile.

PA Table 1b: WC Scores for Multiple Source Sites

>0 to 100 18 > 100 to 10,000 3Z > 10,000 100	· (WQ Tetal	WC Score
>10,000 100	í	>0 to 100	18
>10,000 100	1	> 100 to 10,000	32
	e di tang ana arawa an arawa	> 10,000	100

GROUND WATER PATHWAY

Ground Water Use Description: Provide information on ground water use in the vicinity. Present the general stratigraphy, aquifers used, and distribution of private and municipal wells.

Calculations for Drinking Water Populations Served by Ground Water: Provide populations from private wells and municipal supply systems in each distance category. Show apportionment calculations for blended supply systems.

GROUND WATER PATHWAY GROUND WATER USE DESCRIPTION

Describe Ground Water Use Within 4-miles of the Site:

(Describe stratigraphy, information on aquifers, municipal and/or private wells)

This site lies within the Piedmont/Blue Ridge Province. Metamorphic and igneous rocks that range in age from Precambrian to Triassic underlie this area. Common rock types in the area include granite, granite gneiss, biotite gneiss, mica schist, and amphibolite. These rocks are complexly folded and faulted (Reference 5). Weathering processes result in an overlying mantle of unconsolidated material called saprolite as well as the development of soil. These materials together are referred to as the regolith (Reference 6).

Ground water in this area occurs mainly in the saturated regolith and in discontinuities in the underlying rocks, such as joints, fractures, foliation, and weathered zones. The relatively more permeable regolith serves as a reservoir to trap and channel recharge water into the underlying network of discontinuities in the relatively less permeable bedrock. The orientation of these discontinuities controls groundwater flow directions. Because the regolith and bedrock comprise a single flow system, the "uppermost aquifer" is the only aquifer underlying the site (Reference 6).

Groundwater in this area is typically encountered between 10 and 600 feet below ground surface, and with very few exceptions, is under water table conditions (Reference 7). Yields for wells tend to be relatively small due to the low permeability of the crystalline rocks and overlying regolith, which limits the rate of recharge. For this reason, groundwater in this area is second to surface water for municipal supply. Well yields are highly dependent on well placement and site specific geology, however, and locally may be sufficient for municipal supply. (Reference 6)

Calculations for Drinking Water Populations Served by Ground Water:

TABLE 1: DRINKING WATER POPULATIONS
(Reference 8)

Distance Rings (miles)		Population Served By City Water	Total Population					
0 - 0.25	0	63	63					
0.25 - 0.50	0	181	181					
0.50 - 1.0	7 .	566	573					
1.0 - 2.0	29	7635	7664					
2.0 - 3.0	69	21707	21776					
3.0 - 4.0	309	39174	39483					

GROUND WATER PATHWAY CRITERIA LIST

This "Criteria List" helps guide the process of developing hypotheses concerning the occurrence of a suspected release and the exposure of specific targets to a hazardous substance. The check-boxes record your professional judgment in evaluating these factors. Answers to all of the listed questions may not be available during the PA. Also, the list is not all-inclusive; if other criteria help shape your hypotheses, list them at the bottom of the page or attach an additional page.

The "Suspected Release" section identifies several site, source, and pathway conditions that could provide insight as to whether a release from the site is likely to have occurred. If a release is suspected, use the "Primary Targets" section to evaluate conditions that may help identify targets likely to be exposed to a hazardous substance. Record responses for the well that you feel has the highest probability of being exposed to a hazardous substance. You may use this section of the chart more than once, depending on the number of targets you feel may be considered "primary."

Check the boxes to indicate a "yes," "no," or "unknown" answer to each question. If you check the "Suspected Release" box as "yes," make sure you assign a Likelihood of Release value of 550 for the pathway.

GROUND WATER PATHWAY CRITERIA LIST								
SUSPECTED RELEASE	PRIMARY TARGETS							
Y N U o o n s k Are sources poorly contained? S Are sources poorly contained? S Is the source a type likely to contribute to ground water contamination (e.g., wet lagoon)? S Is waste quantity perticularly large? Is precipitation heavy? Is the infiltration rate high? S Is the site located in an area of karst terrain? S Is the subsurface highly permeable or conductive? S Is drinking water drawn from a shallow aquifer? Are suspected contaminants highly mobile in ground water? Does analytical or circumstantial evidence suggest ground water contamination?	Y N U a o n b k							
suggest ground water contamination?	PRIMARY TARGET(S) IDENTIFIED?							
SUSPECTED RELEASE?								
Summarize the rationale for Suspected Release (attach an additional page if necessary): KNOWN SOIL CONTAMINATION Source is Poorly Contained Suspect Release	Summarize the rationale for Primary Targets lettach an additional page if necessary): No Primary Targets IDENTIFIED. NEAREST CROUNDWATER WELL IN THE 1/2 TO I MILE RADIUS							

GROUND WATER PATHWAY SCORESHEET

Pathway Characteristics

Answer the questions at the top of the page. Refer to the Ground Water Pathway Criteria List (page 7) to hypothesize whether you suspect that a hazardous substance associated with the site has been released to ground water. Record depth to aquifer (in feet): the difference between the deepest occurrence of a hazardous substance and the depth of the top of the shallowest aquifer at (or as near as possible) to the site. Note whether the site is in karst terrain (characterized by abrupt ridges, sink holes, caverns, springs, disappearing streams). Record the distance (in feet) from any source to the nearest well used for drinking water.

Likelihood of Release (LR)

- 1. Suspected Release: Hypothesize based on professional judgment guided by the Ground Water Pathway Criteria List (page 7). If you suspect a release to ground water, use only Column A for this pathway and do not evaluate factor 2.
- 2. No Suspected Release: If you do not suspect a release, determine score based on depth to aquifer or whether the site is in an area of karst terrain. If you do not suspect a release to ground water, use only Column B to score this pathway.

Targets (T)

This factor category evaluates the threat to populations obtaining drinking water from ground water. To apportion populations served by blended drinking water supply systems, determine the percentage of population served by each well based on its production.

- 3. Primary Target Population: Evaluate populations served by all drinking water wells that you suspect have been exposed to a hazardous substance released from the site. Use professional judgment guided by the Ground Water Pathway Criteria List (page 7) to make this determination. In the space provided, enter the population served by any wells you suspect have been exposed to a hazardous substance from the site. If only the number of residences is known, use the average county residents per household (rounded up to the next integer) to determine population served. Multiply the population by 10 to determine the Primary Target Population score. Note that if you do not suspect a release, there can be no primary target population.
- **4. Secondary Target Population**: Evaluate populations served by all drinking water wells within 4 miles that you do not suspect have been exposed to a hazardous substance. Use PA Table 2a or 2b (for wells drawing from non-karst and karst aquifers, respectfully) (page 9). If only the number of residences is known, use the average county residents per household (rounded to the nearest integer) to determine population served. Circle the assigned value for the population in each distance category and enter it in the column on the far-right side of the table. Sum the far-right column and enter the total as the Secondary Target Population factor score.
- 5. Nearest Well represents the threat posed to the drinking water well that is most likely to be exposed to a hazardous substance. If you have identified a primary target population, enter 50. Otherwise, assign the score from PA Table 2a or 2b for the closest distance category with a drinking water well population.
- **6. Wellhead Protection Area (WHPA)**: WHPAs are special areas designated by States for protection under Section 1428 of the Safe Drinking Water Act. Local/State and EPA Regional water officials can provide information regarding the location of WHPAs.
- **7. Resources:** A score of 5 can generally be assigned as a default measure. Assign zero only if ground water within 4 miles has no resource use.

Sum the target scores in Column A (Suspected Release) or Column B (No Suspected Release).

Waste Characteristics (WC)

8. Waste Characteristics: Score is assigned from page 4. However, if you have identified any primary target for ground water, assign either the score calculated on page 4 or a score of 32, whichever is greater.

<u>Ground Water Pathway Score:</u> Multiply the scores for LR, T, and WC. Divide the product by 82,500. Round the result to the nearest integer. If the result is greater than 100, assign 100.

GROUND WATER PATHWAY SCORESHEET

		Pathway Characteristics			
		Do you suspect a release (see Ground Water Pathway Criteria List, page 7)?	Yes	Na	
		Is the site located in karst terrain? Depth to aquifer:	Yes	NoX ^3Oft	
		Distance to the nearest drinking water well:		~5000 H	
			Α	<u> </u>	
			Suspected	No Suspected	
LIK	ELIHO	OOD OF RELEASE	Release	Release	References
1.		CTED RELEASE: If you suspect a release to ground water (see page 7), a score of 550. Use only column A for this pathway.	550	(803) or 3401	
2.	the sitt	SPECTED RELEASE: If you do not suspect a release to ground water, and to is in karst terrain or the depth to aquifer is 70 feet or less, assign a score of otherwise, assign a score of 340. Use only column 8 for this pathway.			
		LR =	550		
TA	RGET!	\$			
	PRIMA drinkin	RY TARGET POPULATION: Determine the number of people served by g water wells that you suspect have been exposed to a hazardous noe from the site (see Ground Water Pathway Criteria List, page 7). people x 10 =	-0-		
	drinkin	IDARY TARGET POPULATION: Determine the number of people served by g water wells that you do NOT suspect have been exposed to a hazardous noe from the site, and assign the total population score from PA Table 2.			
		Are any wells part of a blended system? Yes No X	7	IN 189811 - 9	
	water,	ST WELL: If you have identified a primary target population for ground assign a score of 50; otherwise, assign the Nearest Well score from ole 2. If no drinking water wells exist within 4 miles, assign a score of zero.	9		
	or if yo	IEAD PROTECTION AREA (WHPA): If any source lies within or above a WHPA, but have Identified any primary target well within a WHPA, assign a score of 20; 5 if neither condition holds but a WHPA is present within 4 miles; otherwise zero.	0	(20), E ₁ or 40	
	RESOU		5		
		1=	21		,
WA	STE	CHARACTERISTICS			
8.	cha	ou have identified any primary target for ground water, assign the waste racteristics acore calculated on page 4, or a score of 32, whichever is EATER; do not evaluate part B of this factor.	1100 or 121	1100.77 - 101	
		ou have NOT identified any primary target for ground water, assign the ste characteristics score calculated on page 4.	18	,	
		wc -	18		
GR	OUND	WATER PATHWAY SCORE: LR x T x WC 82,500		52	

PA TABLE 2: VALUES FOR SECONDARY GROUND WATER TARGET POPULATIONS

PA Table 2a: Non-Karst Aquifers

	>3 to 4 miles	>2 to 3 miles	>1 to 2 mlies	> 1/2 to 1 mile	> 1/2 to 1/2 mile	0 to 1/2 mile	from Site	Distance		
Nearest Well =	309	69	29	7	0	0	Population			
9	2	3	۲n	9	18	20	highest)	(choose	Well	Nearest
	_	_	-	9			10	ô	4	
	_	_	Θ	-		2	30	6	11	
	-	Э		2	ω	5	100	ô	31	Poj
	-	2	ယ	5 1	5	16	300	ô	101	oulation Sen
	0	7	9	17	32	52	1,000	ô	301	Population Served by Wells Within
	13	21	29	52	101	163	3,000	6	1,001	Within Dista
	42	68	94	167	323	521	10,000	6	3,001	Distance Category
	131	212	294	522	1,012	1,633	30,000	6	10,001	Y
	417	678	939	1,668	3,233	5,214	100,000	õ	30,001	
Score =	1,306	2,122	2,938	5,224	10,121	16,325	100,000	than	Greater	
7	4	-	-				Value	Population		

PA Table 2b: Karst Aquifers

	>3 to 4 miles	>2 to 3 miles	>1 to 2 miles	>1/2 to 1 mile	> 1/2 to 1/2 mile	0 to 1/2 mile	Distance from Site	
Nearest Well =			 			 	Population	
	20	20	20	20	20	20	(use 20 for karst)	Nearest Well
	-1	٠.	٠.	٠.	-	-	to 10	•
	1		<u> </u>		-	2	to 30	41
	3	u	w	ယ	ω	51	to 100	
	8	6	8	80	10	16	to 300	pulation Se
	26	26	26	26	32	52	to 1,000	rved by Well
	82	82	82	82	101	163	to 3,000	Population Served by Wells Within Distance Category
	261	261	261	261	323	521	to 10,000	ance Catego
	816	816	816	816	1,012	1,633	to 30,000	אני מני
	2,607	2,607	2,607	2,607	3,233	5,214	to 100,000	20 004
Score =	8,162	8,162	8,162	8,162	10,121	16,325	than 100,000	
							Population Value	

SURFACE WATER PATHWAY

Migration Route Sketch: Sketch the surface water migration pathway (freehand is acceptable) illustrating the drainage route and identifying water bodies, probable point of entry, flows, and targets.

SURFACE WATER PATHWAY MIGRATION ROUTE SKETCH

SURFACE WATER PATHWAY CRITERIA LIST

This "Criteria List" helps guide the process of developing hypotheses concerning the occurrence of a suspected release and the exposure of specific targets to a hazardous substance. The check-boxes record your professional judgment in evaluating these factors. Answers to all of the listed questions may not be available during the PA. Also, the list is not all-inclusive; if other criteria help shape your hypotheses, list them at the bottom of the page or attach an additional page.

The "Suspected Release" section identifies several site, source, and pathway conditions that could provide insight as to whether a release from the site is likely to have occurred. If a release is suspected, use the "Primary Targets" section to guide you through evaluation of some conditions that may help identify targets likely to be exposed to a hazardous substance. Record responses for the target that you feel has the highest probability of being exposed to a hazardous substance. You may use this section of the chart more than once, depending on the number of targets you feel may be considered "primary."

Check the boxes to indicate a "yes," "no," or "unknown" answer to each question. If you check the "Suspected Release" box as "yes," make sure you assign a Likelihood of Release value of 550 for the pathway.

If the distance to surface water is greater than 2 miles, do not evaluate the surface water migration pathway. Document the source of information in the text boxes below the surface water criteria list.

SURFACE WATER PATHWAY CRITERIA LIST						
SUSPECTED RELEASE	PRIMARY TARGETS					
Y N U e o n s k ☑ □ □ Is surface water nearby?	Y N U e o n e k ⊠ □ □ is any target nearby? If yes:					
□ 🕱 □ Is wasta quantity particularly large?	□ Drinking water intake 宮 Fishery					
☐ 🔯 ☐ Is the drainage area large?	☑ Sensitive environment					
△ □ □ Is rainfall heavy?	□ 双 □ Has any intaka, fishery, or recreational area been closed?					
□ □ 🕱 is the infiltration rate low?	Does analytical or circumstantial evidence					
Are sources poorly contained or prone to runoff or flooding?	suggest surface water contamination at or downstream of a target?					
ls a runoff route well defined (e.g., ditch.or channel leading to surface water)?	Does any target warrant sampling? If yes:					
☑ ☐ Is vegetation stressed along the probable run- off route?	☐ Drinking water intake ☐ Fishery ☐ Sensitive environment					
□ □ Are sediments or water unnaturally discolored?	Other criterie?					
□ □ ဩ ls wildlife unnaturally ebsent?	□ 🌠 PRIMARY INTAKE(S) IDENTIFIED?					
☐ ☐ Has deposition of waste into surface water been observed?	PRIMARY FISHERY(IES) IDENTIFIED?					
□ 🎽 □ la ground water discharge to surface water likely?	PRIMARY SENSITIVE ENVIRONMENT(S) IDENTIFIED?					
Does analytical or circumstantial evidence suggest surface water contamination?						
Other criteria?						
SUSPECTED RELEASE?						
Summarize the rationals for Suspected Release (attach an additional page if necessary):	Summarize the rationale for Primary Targets (attach an additional page if necessary):					
DOCUMENTED RELEASE TO	No INTAKES WITHIN 15 MILES.					
SURFACE WATER AND	SMALL CREEK IS NOT CONSIDERED					
SEDIMENT. (REFERENCE 6)	PRIMARY FISHERY.					
	ALONG CULVERT AND SMALL CREEK ARE WETLANDS. SEDIMENT SAMPLES CONTIANED					
	CONTAMINANTS FROM SITE,					

SURFACE WATER PATHWAY LIKELIHOOD OF RELEASE AND DRINKING WATER THREAT SCORESHEET

Pathway Characteristics

The surface water pathway includes three threats: Drinking Water Threat, Human Food Chain Threat, and Environmental Threat. Answer the questions at the top of the page. Refer to the Surface Water Pathway Criteria List (page 11) to hypothesize whether you suspect that a hazardous substance associated with the site has been released to surface water. Record the distance to surface water (the shortest overland drainage distance from a source to a surface water body). Record the flood frequency at the site (e.g., 100-yr, 200-yr). If the site is located in more than one floodplain, use the most frequent flooding event. Identify surface water use(s) along the surface water migration path and their distance(s) from the site.

Likelihood of Release (LR)

- 1. Suspected Release: Hypothesize based on professional judgment guided by the Surface Water Pathway Criteria List (page 11). If you suspect a release to surface water, use only Column A for this pathway and do not evaluate factor
- 2. No Suspected Release: If you do not suspect a release, determine score based on the shortest overland drainage distance from a source to a surface water body. If distance to surface water is 2,500 feet or less, assign a score of 500. If distance to surface water is greater than 2,500 feet, determine score based on flood frequency. If you do not suspect a release to surface water, use only Column B to score this pathway.

Drinkina Water Threat Targets IT)

- 3. List all drinking water intakes on downstream surface water bodies along the surface water migration path. Record the intake name, the type of water body on which the intake is located, the flow of the water body, and the number of people served by the intake (apportion the population if part of a blended system).
- **4. Primary Target Population:** Evaluate populations served by all drinking water intakes that you suspect have been exposed to a hazardous substance released from the site. Use professional judgment guided by the Surface Water Pathway Criteria List (page 11) to make this determination. In the space provided, enter the population served by all intakes you suspect have been exposed to a hazardous substance from the site. If only the number of residences is known, use the average county residents per household (rounded up to the next integer) to determine population served. Multiply by 10 to determine the Primary Target Population score. Remember, if you do not suspect a release, there can be no primary target population.
- 5. Secondary Target Population: Evaluate populations served by all drinking water intakes within the target distance limit that you do not suspect have been exposed to a hazardous substance. Use PA Table 3 (page 13) and enter the population served by intakes for each flow category. If only the number of residences is known, use the average county residents per household (rounded to the nearest integer) to determine population served. Circle the assigned value for the population in each flow category and enter it in the column on the far-right side of the table. Sum the far-right column and enter the total as the Secondary Target Population factor score.

Gauging station data for many surface water bodies are available from USGS or other sources. In the absence of gauging station data, estimate flow using the list of surface water body types and associated flow categories in PA Table 4 (page 13). The flow for lakes is determined by the sum of flows of streams entering or leaving the lake. Note that the flow category "mixing zone of quiet flowing rivers" is limited to 3 miles from the probable point of entry.

- **6. Nearest Intake** represents the threat posed to the drinking water intake that is most likely to be exposed to a hazardous substance. If you have identified a primary target population, enter 50. Otherwise, assign the score from PA Table 3 (page 13) for the lowest-flowing water body on which there is an intake.
- 7. Resources: A score of 5 can generally be assigned as a default measure. Assign zero only if surface water within the target distance limit has no resource use.

Sum the target scores in Column A (Suspected Release) or Column B (No Suspected Release).

SURFACE WATER PATHWAY LIKELIHOOD OF RELEASE AND DRINKING WATER THREAT SCORESHEET

Pathway Characteristics

		Do you suspect a release (see Surface Water Production of Surface water: Flood frequency: What is the downstream distance to the neares Nearest fishery?miles Nearest sens		~	Yes miles	No 25 ft 500 yrs	
		•			A Suspected	B No Suspected	
LI	KELIHO	OD OF RELEASE			Release	Release	References
1.		CTED RELEASE: If you suspect a release to sur a score of 550. Use only column A for this pat	١,	550	11.00 1871 1874		
2.	water,	SPECTED RELEASE: If you do not suspect a reluse the table below to assign a score based on and flood frequency. Use only column B for this	distance to surface			(600,400,300 er 180)	-
[Distance to surface water ≤ 2,500 feet	500				
l		Distance to surface water > 2,500 feet, and					
		Site in annual or 10-year floodplain	500			,	
j		Site in 100-year floodplain	400	1			
		Site in 500-year floodplain	300				
l		Site outside 500-year floodplain	100				
				LR -	550	(\$600,400,300 er 100)	
DR	UNKIN	G WATER THREAT TARGETS					
3.	by eac	the water body type, flow (if applicable), and ni h drinking water intake within the target distance g water intake within the target distance limit, fiscalive zero scores. Name Water Body Type	e limit. If there is no	ved			
4.	above Pathwa	RY TARGET POPULATION: If you suspect any has been exposed to a hazardous substance from ay Criteria List, page 11), list the intake name(s) based on the total population served.	n the site (see Surface V	Nater	-0-		
5. SECONDARY TARGET POPULATION: Determine the number of people served by drinking water intakes that you do NOT suspect have been exposed to a hazardous substance from the site, and assign the total population score from PA Table 3.							
		Are any intakes part of a blended system? Yilf yes, attach a page to show apportionment ca	es No dculations.		-0-	20.16.1.1. - 0	
6.	drinkin Neares	ST INTAKE: If you have identified a primary tar g water threat (factor 4), assign a score of 50; of it Intake score from PA Table 3. If no drinking w get distance limit, assign a score of zero.	therwise, assign the	.	- 0-		
_		•			B-0	D = O	
<u></u>	RESOL	JRCES			5		
		***		T =	5		

PA TABLE 3: VALUES FOR SECONDARY SURFACE WATER TARGET POPULATIONS

Surface Water		Nearest				Popul	ation Ser	ved by In	takes Wi	thin Distai	nce Categ	ory		
Body Flow (see PA Table 4)	Population	Intake (choose highest)	1 to 10	31 to 100	101 to 300	301 to 1,000	1,001 to 3,000	3,001 to 10,000	10,001 to 30,000	30,001 to 100,000	100,001 to 300,000	300,001 to 1,000,000	Greater than 1,000,000	Population Value
<10 cfs		20	2	5	16	52	163	521	1,633	5,214	16,325	52,136	163,246	
10 to 100 cfs		2	1	1	2	5	16	52	163	521	1,633	5,214	16,325	
>100 to 1,000 cfs		1	0	0	1	1	2	5	16	52	163	521	1,633	
>1,000 to 10,000 cfs		0	0	0	0	0	1	1 .	2	. 5	16	52	163	
>10,000 cfs or Great Lakes		0	0	0	0	0	0	0	1	1	2	5	16	
3-mile Mixing Zone		10	1	3	8	26	82	261	816	2,607	8,162	26,068	81,663	
	Nearest Intake =							•					Score =	-0-

PA TABLE 4: SURFACE WATER TYPE / FLOW CHARACTERISTICS WITH DILUTION WEIGHTS FOR SECONDARY SURFACE WATER SENSITIVE ENVIRONMENTS

TYPE O	Dilution			
Water Body Type	ater Body Type OR FLOW			
minimal stream		<10 cfs	1	
small to moderate stream		10 to 100 cfs	0.1	
moderate to large stream		>100 to 1,000 cfs	N/A	
large stream to river		1,000 to 10,000 cfs	N/A	
large river		>10,000 cfs	N/A	
3-mile mixing zone of				
quiet flowing streams or rivers		10 cfs or greater	N/A	
coastal tidal water (harbors,				
sounds, bays, etc.), ocean,		N/A	N/A	
or Great Lakes				

SURFACE WATER PATHWAY HUMAN FOOD CHAIN THREAT SCORESHEET

Likelihood of Release (LR)

LR is the same for all surface water pathway threats. Enter LR score from page 12.

Human Food Chain Threat Targets (T)

8. The only human food chain targets are fisheries. A fishery is an area of a surface water body from which food chain organisms are taken or could be taken for human consumption on a subsistence, sporting, or commercial basis. Food chain organisms include fish, shellfish, crustaceans, amphibians, and amphibious reptiles. Fisheries are delineated by changes in surface water body type (i.e., streams and rivers, lakes, coastal tidal waters, and oceans/Great Lakes) and whenever the flow characteristics of a stream or river change.

In the space provided, identify all fisheries within the target distance limit. Indicate the surface water body type and flow for each fishery. Gauging station flow data are available for many surface water bodies from USGS or other sources. In the absence of gauging station data, estimate flow using the list of surface water body types and associated flow categories in PA Table 4 (page 13). The flow for lakes is determined by the sum of flows of streams entering or leaving the lake, Note that, if there are no fisheries within the target distance limit, the Human Food Chain Threat Targets score is zero.

- 9. Primary fisheries are any fisheries within the target distance limit that you suspect have been exposed to a hazardous substance released from the site. Use professional judgment guided by the Surface Water Pathway Criteria List (page 11) to make this determination. If you identify any primary fisheries, list them in the space provided, enter 300 as the Primary Fisheries factor score, and do not evaluate Secondary Fisheries. Note that if you do not suspect a release, there can be no primary fisheries.
- **10.** Secondary fisheries are fisheries that you do not suspect have been exposed to a hazardous substance. Evaluate this factor only if fisheries are present within the target distance limit, but none is considered a primary fishery.
- A. If you suspect a release to surface water and have identified a secondary fishery but no primary fishery, assign a score of 210.
- B. If you do not suspect a release, evaluate this factor based on flow. In the absence of gauging station flow data, estimate flow using the list of surface water body types and associated flow categories in PA Table 4 (page 13). Assign a Secondary Fisheries score from the table on the scoresheet using the lowest flow at any fishery within the target distance limit. (Dilution weight multiplier does not apply to PA evaluation of this factor.)

Sum the target scores in Column A (Suspected Release) or Column B (No Suspected Release).

SURFACE WATER PATHWAY (continued) HUMAN FOOD CHAIN THREAT SCORESHEET

			A	<u>B</u>
IKELIHOOD OF RELEASE			Suspected Release	Na Suspected Release
		<i>*</i>	(ESC)	(800,400,300 as 100)
nter Surface Water Likelihood of Release score	from page 12.	LR =	550	
HUMAN FOOD CHAIN THREAT TARGE	Te			
TOWART FOOD CHART THREAT TANGE	13	-	11.0	a - 5 7°
3. Record the water body type and flow (if ap		y within		1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-
the target distance limit. If there is no fish	=		***	
distance limit, assign a Targets score of 0	at the pottom of the pa	ge.		American de
Fizhery Name	Water Body Type	Flow		
UNNAMED TRIBUTARY	CREEK	cfs		
SOUTH RIVER	BIYER	cfs		
		cfs		
		cfs		5,71
		cts		
to a hazardous substance from the site (se				
assign a score of 300 and do not evaluate		List, page 11),		
assign a score of 300 and do not evaluate		List, page 11),	(210)	
assign a score of 300 and do not evaluate	Factor 10. List the prin	a List, page 11), nary fisheries:	(210)	
assign a score of 300 and do not evaluate O. SECONDARY FISHERIES A. If you suspect a release to surface water a	Factor 10. List the prin	a List, page 11), nary fisheries:		
assign a score of 300 and do not evaluate O. SECONDARY FISHERIES A. If you suspect a release to surface water a but no primary fishery, assign a score of 2	Factor 10. List the pring	a List, page 11), nary fisheries:	210	
assign a score of 300 and do not evaluate D. SECONDARY FISHERIES A. If you suspect a release to surface water a but no primary fishery, assign a score of 2 B. If you do not suspect a release, assign a Sign a S	Factor 10. List the printed a secondary Fisheries score	a List, page 11), nary fisheries:		210,30, et 121
assign a score of 300 and do not evaluate O. SECONDARY FISHERIES A. If you suspect a release to surface water a but no primary fishery, assign a score of 2	Factor 10. List the printed a secondary Fisheries score	a List, page 11), nary fisheries:		210,30, a 12
assign a score of 300 and do not evaluate D. SECONDARY FISHERIES A. If you suspect a release to surface water a but no primary fishery, assign a score of 2 B. If you do not suspect a release, assign a Sign a S	nd have identified a sec 10. econdary Fisheries score within the target distan	a List, page 11), nary fisheries: condary fishery a from the table nce limit.		210,30, a 12
assign a score of 300 and do not evaluate O. SECONDARY FISHERIES A. If you suspect a release to surface water a but no primary fishery, assign a score of 2 B. If you do not suspect a release, assign a Sibelow using the lowest flow at any fishery	Factor 10. List the printed a secondary Fisheries score	a List, page 11), nary fisheries: condary fishery a from the table nce limit.		210,30, e= 121
assign a score of 300 and do not evaluate O. SECONDARY FISHERIES A. If you suspect a release to surface water a but no primary fishery, assign a score of 2 B. If you do not suspect a release, assign a Sign a S	nd have identified a sec 10. econdary Fisheries scor within the target distan	a List, page 11), nary fisheries: condary fishery a from the table nce limit.		210,30, æ 12
assign a score of 300 and do not evaluate O. SECONDARY FISHERIES A. If you suspect a release to surface water a but no primary fishery, assign a score of 2 B. If you do not suspect a release, assign a Sibelow using the lowest flow at any fishery Lowest Flow	Factor 10. List the print and have identified a secondary Fisheries score within the target distant and the secondary Fisheries 210	a List, page 11), nary fisheries: condary fishery a from the table nce limit.		210,30, er 121
assign a score of 300 and do not evaluate 0. SECONDARY FISHERIES A. If you suspect a release to surface water a but no primary fishery, assign a score of 2 B. If you do not suspect a release, assign a Sibelow using the lowest flow at any fishery Lowest Flow	Factor 10. List the print and have identified a secondary Fisheries score within the target distant and the secondary Fisheries 210	a List, page 11), nary fisheries: condary fishery a from the table nce limit.		(210,30, er 121

SURFACE WATER PATHWAY ENVIRONMENTAL THREAT SCORESHEET

Likelihood of Release (LR)

LR is the same for all surface water pathway threats. Enter LR score from page 12.

Environmental Threat Targets (T)

- 11. PA Table 5 (page 16) lists sensitive environments for the Surface Water Pathway Environmental Threat. In the space provided, identify all sensitive environments located within the target distance limit. Indicate the surface water body type and flow at each sensitive environment. Gauging station flow data for many surface water bodies are available from USGS or other sources. In the absence of gauging station data, estimate flow using the list of surface water body types and associated flow categories in PA Table 4 (page 13). The flow for lakes is determined by the sum of flows of streams entering or leaving the lake. Note that if there are no sensitive environments within the target distance limit, the Environmental Threat Targets score is zero.
- 12. Primary sensitive environments are surface water sensitive environments within the target distance limit that you suspect have been exposed to a hazardous substance released from the site. Use professional judgment guided by the Surface Water Pathway Criteria List (page 11) to make this determination. If you identify any primary sensitive environments, list them in the space provided, enter 300 as the Primary Sensitive Environments factor score, and do not evaluate Secondary Sensitive Environments. Note that if you do not suspect a release, there can be no primary sensitive environments.
- 13. Secondary sensitive environments are surface water sensitive environments that you do not suspect have been exposed to a hazardous substance. Evaluate this factor only if surface water sensitive environments are present within the target distance limit, but none is considered a primary sensitive environment. Evaluate secondary sensitive environments based on flow.
 - ! In the table provided, list all secondary sensitive environments on surface water bodies with flow of 100 cfs or less.
 - 1) Use PA Table 4 (page 13) to determine the appropriate dilution weight for each.
 - 2) Use PA Tables 5 and 6 (page 16) to determine the appropriate value for each sensitive environment type and for wetlands frontage.
 - 3) For a sensitive environment that falls into more than one of the categories in PA Table 5, sum the values for each type to determine the environment value (e.g., a wetland with 1.5 miles frontage (value of 50) that is also a critical habitat for a Federally designated endangered species (value of 100) would receive a total value of 150).
 - 4) For each sensitive environment, multiply the dilution weight by the environment type (or length of wetlands) value and record the product in the far-right column.
 - 5) Sum the values in the far-right, column and enter the total as the Secondary Sensitive Environments score. Do not evaluate part B of this factor.
 - ! If all secondary sensitive environments are on surface water bodies with flows greater than 100 cfs, assign 10 as the Secondary Sensitive Environments score.

Sum the target scores in Column A (Suspected Release) or Column B (No Suspected Release).

SURFACE WATER PATHWAY (continued) ENVIRONMENTAL THREAT SCORESHEET

					A	<u> </u>
· ·					Suspected	No Suspected
KELIHOOD OF RE	LEASE				Refease	Refease 100
er Surface Water Lik	elihood of Release scor	re from page 12.		LR =	550	
VIRONMENTAL	THREAT TARGETS					
. Record the water b	ody type and flow (if a	pplicable) for each surfac	a water			· · ·
		stance limit (see PA Table				
	••	nt within the target distar	nce			
limit, assign a Targ	ets score of 0 at the bo	ottom of the page.				
Environment Name		Water Body Type	How			
	29 UNNAMED TEL		cf	\$		
WETLANDS/	SOUTH BIYER	<u>BIVER</u>	<u> 4100</u> cf	s		
	_		cf	•		
			cf	•		
			cf	•		
701144 01/ 0010-0-	// Childroom	f you suspect any sensitiv			1369	
	primary sensitive envir		·		300	
present, but none is		5: If sensitive environment nvironment, evaluate Seco				
		on surface water bodies ws, and do not evaluate p		1		
	Dilution Weight	Environment Type and Value	20			1
Flow cfs	(PA Table 4)	(PA Tables 5 and 6)		Total		İ
- cfs	x		<u> </u>		1	ļ
cfs	XI			*		
cfs			= = = = = = = = = = = = = = = = = = = =	\vdash		Į
	x			$\vdash\vdash$		
cfs	x			لـــا		1
				\$um =	[10]	(10)
B. If all secondary	sensitive environments	s are located on surface v	vater bodies			
with flows > 10	00 cfs, assign a score o	of 10.			·x -	
					 	
	•	•		Т_	300]

PA TABLE 5: SURFACE WATER AND AIR PATHWAY SENSITIVE ENVIRONMENTS VALUES

Sensitive Environment	Assigned Value
Critical habitat for Federally designated endangered or threatened species Marine Sanctuary National Park Designated Federal Wildemess Area Ecologically important areas identified under the Coastal Zone Wildemess Act Sensitive Areas identified under the National Estuary Program or Near Coastal Water Program of the Clean Water Act Critical Areas Identified under the Clean Lakes Program of the Clean Water Act (subareas in lakes or entire small lakes) National Monument (air pathway only) National Seashore Recreation Area National Lakeshore Recreation Area	100
Habitat known to be used by Federally designated or proposed endangered or threatened species National Preserve National or State Wildlife Refuge Unit of Coastal Barrier Resources System Federal land designated for the protection of natural ecosystems Administratively Proposed Federal Wilderness Area Spawning areas critical for the maintenance of fish/shellfish species within a river system, bay, or estuary Migratory pathways and feeding areas critical for the maintenance of anadromous fish species in a river system Terrestrial areas utilized for breeding by large or dense aggregations of vertebrate animals (air pathway) or semi-aquatic foragers (surface water pathway) National river reach designated as Recreational	75
Habitat known to be used by State designated endangered or threatened species Habitat known to be used by a species under review as to its Federal endangered or threatened status Coastal Barrier (partially developed) Federally designated Scenic or Wild River	50
State land designated for wildlife or game management State designated Scenic or Wild River State designated Natural Area Particular areas, relatively small in size, important to maintenance of unique biotic communities	25
State designated areas for protection/maintenance of aquatic life under the Clean Water Act	5
See PA Table 6 (Surfi Wetlands Or PA Table 9 (A	•

PA TABLE 6: SURFACE WATER PATHWAY WETLANDS FRONTAGE VALUES

Total Length of Wetlands	Assigned Value
Less than 0.1 mile	0
0.1 to 1 mile	25
Greater than 1 to 2 miles	50
Greater than 2 to 3 miles	75
Greater than 3 to 4 miles	100
Greater than 4 to 8 miles	150
Greater than 8 to 12 miles	250
Greater than 12 to 16 miles	350
Greater than 18 to 20 miles	450
Greater than 20 miles	500

SURFACE WATER PATHWAY WASTE CHARACTERISTICS, THREAT, AND PATHWAY SCORES

Waste Characteristics (WC)

14. Waste Characteristics: Score is assigned from page 4. However, if a primary target has been identified for any surface water threat, assign either the score calculated on page 4 or a score of 32, whichever is greater.

Surface Water Pathway Threat Scores

Fill in the matrix with the appropriate scores from the previous pages. To calculate the score for each threat: multiply the scores for LR, T, and WC; divide the product by 82,500; and round the result to the nearest integer. The Drinking Water Threat and Human Food Chain Threat are each subject to a maximum of 100. The Environmental Threat is subject to a maximum of 60. Enter the rounded threat scores in the far-right column.

Surface Water Pathway Score

Sum the individual threat scores to determine the Surface Water Pathway Score. If the sum is greater than 100, assign 100.

SURFACE WATER PATHWAY (concluded) WASTE CHARACTERISTICS, THREAT, AND PATHWAY SCORE SUMMARY

	A	В
the second of the property of the second of	Suspected	No Suspected
WASTE CHARACTERISTICS	Release	Release
14. A. If you have identified any primary target for surface water (pages 12, 14, or 15), assign the waste characteristics score calculated on page 4, or a scor of 32, whichever is GREATER; do not evaluate part 8 of this factor.	(100 = 32)	
P. If you have NOT identified any primary target for curfors water accion the	[100,32, = 18]	[100,32, = 16]
B. If you have NOT identified any primary target for surface water, assign the waste characteristics score calculated on page 4.	18	
wc	- 18	

SURFACE WATER PATHWAY THREAT SCORES

Threat	Likelihood of Release (LRI Score (from page 12)	Targets (T) Socre (pages 12, 14, 15)	Pathway Waste Characteristics (WC) Soors (determined above)	Threat Score LR x T x WC / 82,500
Drinking Water	550	-0-	18	(subject to a measurem of 100)
Human Food Chain	550	210	18	251 Z
Environmental	550	30 <i>0</i>	18	36.0

SURFACE WATER PATHWAY SCORE (Drinking Water Threat + Human Food Chain Threat + Environmental Threat)

61.2

SOIL EXPOSURE PATHWAY CRITERIA LIST

Areas of surficial contamination can generally be assumed. This "Criteria List" helps guide the process of developing a hypothesis concerning the exposure of specific targets to a hazardous substance at the site. Use the "Resident Population" section to evaluate site and source conditions that may help identify targets likely to be exposed to a hazardous substance. The check-boxes record your professional judgment. Answers to all of the listed questions may not be available during the PA. Also, the list is not all-inclusive; if other criteria help shape your hypothesis, list them at the bottom of the page or attach an additional page.

Check the boxes to indicate a "yes," "no," or "unknown" answer to each question.

SOIL EXPOSURE PATHWAY CRITERIA LIST					
SUSPECTED CONTAMINATION	RESIDENT POPULATION				
	Y N U e o n s k S is any residence, school, or daycare facility on or within 200 feet of an area of suspected contamination?				
Surficial contamination can generally be assumed.	Is any residence, school, or daycare facility located on adjacent land previously owned or leased by the site owner/operator?				
	□ □ 🂢 Is there a migration route that might spread hazardous substances near residences, schools, or daycare facilities?				
,	Have onsite or adjacent residents or students reported adverse health effects, exclusive of apparent drinking water or air contamination problems?				
	□ ☑ □ Does any neighboring property warrant sampling?				
	□ □ Other criteria?				
	□ X RESIDENT POPULATION IDENTIFIED?				
No WORKERS ONSIT No RESIDENTS OR WITHIN 200 FE	DAYCARE FACILITIES				

SOIL EXPOSURE PATHWAY SCORESHEET

Pathway Characteristics

Answer the questions at the top of the page. Identify people who may be exposed to a hazardous substance because they work at the facility, or reside or attend school or daycare on or within 200 feet of an area of suspected contamination. If the site is active, estimate the number of full and part-time workers. Note that evaluation of targets is based on current site conditions.

Likelihood of Exposure (LE)

1. Suspected Contamination: Areas of surficial contamination are present at most sites, and a score of 550 can generally be assigned as a default measure. Assign zero, which effectively eliminates the pathway from further consideration, only if there is no surficial contamination; reliable analytical data are generally necessary to make this determination.

Resident Population Threat Targets (T)

- 2. Resident Population corresponds to "primary targets" for the migration pathways. Use professional judgment guided by the Soil Exposure Pathway Criteria List (page 18) to determine if there are people living or attending school or daycare on or within 200 feet of areas of suspected contamination. Record the number of people identified asresident population and multiply by 10 to determine the Resident Population factor score.
- 3. Resident Individual: Assign 50 if you have identified a resident population; otherwise, assign zero.
- **4. Workers:** Estimate the number of full and part-time workers at this facility and adjacent facilities where contamination is also suspected. Assign a score for the Workers factor from the table.
- **5. Terrestrial Sensitive Environments:** In the table provided, list each terrestrial sensitive environment located on an area of suspected contamination. Use PA Table 7 (page 20) to assign a value for each. Sum the values and assign the total as the factor score.
- **6. Resources:** A score of 5 can generally be assigned as a default measure. Assign zero only if there is no land resource use on an area of suspected contamination.

Sum the target scores.

Waste Characteristics (WC)

7. Enter the WC score determined on page 4.

Resident Population Threat Score: Multiply the scores for LE, T, and WC. Divide the product by 82,500. Round the result to the nearest integer. If the result is greater than 100, assign 100.

<u>Nearby Population Threat Score</u>: Do not evaluate this threat if you gave a zero score to Likelihood of Exposure. Otherwise, assign a score based on the population within a 1-mile radius (use the same 1-mile radius population you evaluate for air pathway population targets):

Population Within One Mile	Nearby Population Threat Score
< 10, 000	1
10,000 to 50,000	2
> 50,000	4

<u>Soil Exposure Pathway Score:</u> Sum the Resident Population Threat score and the Nearby Population Threat score, subject to a maximum of 100.

SOIL EXPOSURE PATHWAY SCORESHEET

	Do any people live on or within 200 ft of areas of suspected contamination? Do any people attend school or daycare on or within 200 ft of areas of suspected contamination? Is the facility active? Yes No If yes, estimate the number of workers:	Yes	No X	1
LIF	KELIHOOD OF EXPOSURE	Suspected Contemination	7	References
1.	SUSPECTED CONTAMINATION: Surficial contamination can generally be assumed, and a score of 550 assigned. Assign zero only if the absence of surficial contamination can be confidently demonstrated.	550		
RE	SIDENT POPULATION THREAT TARGETS			
Г	RESIDENT POPULATION: Determine the number of people occupying residences or attending school or daycare on or within 200 feet of areas of suspected contamination (see Soil Exposure Pathway Criteria List, page 18).	-0-		
3.	RESIDENT INDIVIDUAL: If you have identified a resident population (factor 2), assign a score of 50; otherwise, assign a score of 0.	_ 0 -		
4.	WORKERS: Use the following table to assign a score based on the total number of workers at the facility and nearby facilities with suspected contamination: Number of Workers Score	112.12.23		
	Number of Workers Score 0 0 1 to 100 5 101 to 1,000 10 > 1,000 15	-0-		,
Б.	TERRESTRIAL SENSITIVE ENVIRONMENTS: Use PA Table 7 to assign a value for each terrestrial sensitive environment on an area of suspected contamination: Terrestrial Sensitive Environment Type Value			
	Sum =	-0-		
8.	RESOURCES	5		
W	T =	5		
7.	Assign the waste characteristics score calculated on page 4. WC =	(160, 32, or 18)		
RE	SIDENT POPULATION THREAT SCORE: LE X T X WC 82,500.	0.6		
NE	ARBY POPULATION THREAT SCORE:		j	
	OIL EXPOSURE PATHWAY SCORE: sident Population Threat + Nearby Population Threat	1,6		

PA TABLE 7: SOIL EXPOSURE PATHWAY TERRESTRIAL SENSITIVE ENVIRONMENT VALUES

Terrestrial Sensitive Environment	Assigned Value
Terrestrial critical habitat for Federally designated endangered or threatened species National Park Designated Federal Wilderness Area National Monument	100
Terrestrial habitat known to be used by Federally designated or proposed threatened or endangered species National Preserve (terrestrial) National or State terrestrial Wildlife Refuge Federal land designated for protection of natural ecosystems Administratively proposed Federal Wilderness Area Terrestrial areas utilized by large or dense aggregations of animals (vertebrate species) for breeding	75
Terrestrial habitat used by State designated endangered or threatened species Terrestrial habitat used by species under review for Federal designated endangered or threatened status	50
State lands designated for wildlife or game management State designated Natural Areas Particular areas, relatively small in size, important to maintenance of unique biotic communities	25

AIR PATHWAY CRITERIA LIST

This "Criteria List" helps guide the process of developing a hypothesis as to whether a release to the air is likely to be detected. The check-boxes record your professional judgment. Answers to all of the listed questions may not be available during the PA. Also, the list is not all-inclusive; if other criteria help shape your hypothesis, list them at the bottom of the page or attach an additional page.

The "Suspected Release" section identifies several conditions that could provide insight as to whether a release from the site is likely to be detected. If a release is suspected, primary targets are any residents, workers, students, and sensitive environments on or within ¼ mile of the site.

Check the boxes to indicate a "yes," "no," or "unknown" answer to each question. If you check the "Suspected Release" box as "yes," make sure you assign a Likelihood of Release value of 550 for the pathway.

	AIR PATHWAY CRITERIA LIST							
	SUSPECTED RELEASE		PRIMARY TARGETS					
- X -	Are odors currently reported? Has release of a hazardous substant been directly observed? Are there reports of adverse health (e.g., headaches, nauses, dizzlness) resulting from migration of hazardous substances through the air?	affects potentially	If you suspect a release to air, evaluate all populations and sensitive environments within 1/4 mile (including those onsite) as primary targets.					
	Does analytical or circumstantial evenuggest a release to the air?	idence						
_ 4	Other criteria?	·· 						
□ X	SUSPECTED RELEASE?	<u> </u>						
Summariza	the rationale for Suspected Release	(attach an ad	ditional page if necessary):					
	No odors RE		•					
	No DUST OBS	ERVET	DURING SITE VISIT,					

AIR PATHWAY SCORESHEET

Pathway Characteristics

Answer the questions at the top of the page. Refer to the Air Pathway Criteria List (page 21) to hypothesize whether you suspect that a hazardous substance release to the air could be detected. Due to dispersion, releases to air are not as persistent as releases to water migration pathways and are much more difficult to detect. Develop your hypothesis concerning the release of hazardous substances to air based on "real time" considerations. Record the distance (in feet) from any source to the nearest regularly occupied building.

Likelihood of Release (LR)

- 1. Suspected Release: Hypothesize based on professional judgment guided by the Air Pathway Criteria List (page 21). If you suspect a release to air, use only Column A for this pathway and do not evaluate factor 2.
- 2. No Suspected Release: If you do not suspect a release, enter 500 and use only Column B for this pathway.

Targets (T)

- 3. Primary Target Population: Evaluate populations subject to exposure from release of a hazardous substance from the site. If you suspect a release, the resident, student, and worker populations on and within ¼ mile the site are considered primary target population. If only the number of residences is known, use the average county residents per household (rounded up to the next integer) to determine the population. In the space provided, enter this population. Multiply the population by 10 to determine the Primary Target Population score. Note that if you do not suspect a release, there can be no primary target population.
- 4. Secondary Target Population: Evaluate populations in distance categories not suspected to be subject to exposure from release, of a hazardous substance from the site. If you suspect a release, residents, students, and workers in the $\frac{1}{4}$ to 4-mile distance categories are secondary target population. If you do not suspect a release, all residents, students, and workers onsite and within 4 miles are considered secondary target population.

Use PA Table 8 (page 23). Enter the population in each secondary target population distance category, circle the assigned value, and record it on the far-right side of the table. Sum the far-right column and enter the total as the Secondary Target Population factor score.

- 5. Nearest Individual represents the threat posed to the person most likely to be exposed to a hazardous substance release from the site. If you have identified a primary target population, enter 50. Otherwise, assign the score from PA Table 8 (page 23) for the closest distance category in which you have identified a secondary target population.
- **6. Primary Sensitive Environments:** If a release is suspected, all sensitive environments on or within ¼ mile of the site are considered primary targets. List them and assign values for sensitive environment type (from PA Table 5, page 16) and/or wetland acreage (from PA Table 9, page 23). Sum the values and enter the total as the factor score.
- 7. Secondary Sensitive Environments: If a release is suspected, sensitive environments in the $\frac{1}{4}$ to $\frac{1}{4}$ mile distance category are secondary targets; greater distances need not be evaluated because distance weighting greatly diminishes the impact on site score. If you do not suspect a release, all sensitive environments on and within $\frac{1}{4}$ mile of the site are considered secondary targets. List each secondary sensitive environment on PA Table 10 (page 23) and assign a value to each using PA Tables 6 and 9. Multiply each value by the indicated distance weight and record the product in the far right column. Sum the products and enter the total as the factor score.
- 8. Resources: A score of 5 can generally be assigned as a default measure. Assign zero only if there is no land resource use within ½ mile.

Sum the target scores in Column A (Suspected Release) or Column B (No Suspected Release).

Waste Characteristics (WC)

9.Waste Characteristics: Score is assigned from page 4. However, if you have identified any primary target for the air pathway, assign either the score calculated on page 4 or a score of 32, whichever is greater.

<u>Air Pathway Score:</u> Multiply the scores for LR, T, and WC. Divide the product by 82,500. Round the result to the nearest integer. If the result is greater than 100, assign 100.

AIR PATHWAY SCORESHEET

			Pathway Characteristica				
			uspect a release (see Air Pathway Criteria List, page 21)? to the nearest individual:	•	Yes	Noft	
					A	В	
Ш	KELIHO	OOD OF	RELEASE		Suspected Release	Ne Suspected Release	References
1.			EASE: If you suspect a release to air (see page 21), assign a se only column A for this pathway.			(600)	
2.			RELEASE: If you do not suspect a release to air, assign a se only column 8 for this pathway.			500	
				LR =		500	
T/	ARGET	<u>s</u>					
3.			ET POPULATION: Determine the number of people subject a suspected release of hazardous substances to the air	10 =			
4.	suspe		RGET POPULATION: Determine the number of people not exposed to a release to air, and assign the total population labels 8	:		17	
		-			(64,24,7,2,1, ar G	DA7.1.1. = 0	
5.	for the	air pathw	DUAL: If you have identified any Primary Target Population ay, assign a score of 50; otherwise, assign the Nearest rom PA Table 8.			20	
5.	(PA Ta	able 5) and	TIVE ENVIRONMENTS: Sum the sensitive environment values wetland acreage values (PA Table 9) for environments subject a suspected release to the air.				
			Sensitive Environment Type Value				
				Sum =			
7.			NSITIVE ENVIRONMENTS: Use PA Table 10 to determine ondary sensitive environments.	·		0.7	
8.	RESOL	URCES			6 = 0	5	
_				T =		42.7	
W	ASTE	CHARAC	TERISTICS		100 = 12		
9.	chi	eracteristic	fentified any Primary Target for the air pathway, assign the was a acore calculated on page 4, or a score of 32, whichever is not evaluate part 8 of this factor.	ste .			
			OT identified any Primary Target for the air pathway, sasign the terlatics score calculated on page 4.	•	(100 <u>.31</u> a 14	18	
				wc -		18	
					·		
AI	R PAT	HWAY S	CORE: LR x T x W0	<u>c</u>	4	1000 d 1000	
							,

PA TABLE 8: VALUES FOR SECONDARY AIR TARGET POPULATIONS

		Nearest					Population WithIn Distance Category								
Distance from Site	Population	Individual (choose highest)	1 to 10	11 to 30	31 to 100	101 to 300	301 to 1,000	1,001 to 3,000	3,001 to 10,000	10,001 to 30,000	30,001 to 100,000	100,001 to 300,000	300,001 to 1,000,000	Greater than 1,000,000	Populatio Value
Onsite		20	1	2	5	16	52	163	521	1,633	5,214	16,325	52,136	163,246	
>0 to 1/4 mile	63	<u>(20)</u>	1	1	1	4	13	41	130	408	1,303	4,081	13,034	40,811	1
>¼ to ¼ mile	132	2	0.	0	1	0	3	9	28	88	282	882	2,815	8,815	1
>1/2 to 1 mile	572	1	0	0	0	1	0	3	8	26	83	261	834	2,612	l l
>1 to 2 miles	7664	0	0	0	0	0	1	1	3	8	27	83	266	833	3
>2 to 3 miles	21776	0	0	0	0	0	1	1	1	4	12	38	120	376	4
>3 to 4 miles	39482	0	0	0	0	0	0	1	1	2	(1)	23	73	229	7
Nea	Nearest Individual = 20 Score =						17								

PA TABLE 8: AIR PATHWAY VALUES FOR WETLAND AREA							
Wetland Area Assigned Value							
Less than 1 acre	0						
1 to 50 acres	25						
Greater than 50 to 100 acres	75						
Greater than 100 to 150	125						
Greater than 150 to 200 acres	175						
Greater than 200 to 300 acres	250						
Greater than 300 to 400 acres	350						
Greater than 400 to 500 acres	450						
Greater than 500 acres	500						

	Distance	Sensitive Environment Type and Value	
Distance	Weight	(from PA Table 5 or 9)	Produ
0 "	0.40	х .	
Onsite	0.10	x	
		× 25 WETLAND CREEK	0.62
0-1/4 mi	0.025	х	
		х	
	? mi 0.0054	* 25 WETLAND CREEK	0.13
		X	
1/4-1/2 mi		x	
		x	
	<u> </u>	Total Environments Score =	0.70

SITE SCORE CALCULATION

In the column labeled S, record the Ground Water Pathway score, the Surface Water Pathway score, the Soil Exposure Pathway score, and the Air Pathway score. Square each pathway score and record the result in the S^2 column. Sum the squared pathway scores. Divided the sum by 4, and take the square root of the result to obtain the **Site Score**.

SUMMARY

Answer the summary questions, which ask for a qualitative evaluation of the relative risk of targets being exposed to a hazardous substance from the site. You may find your responses to these questions a good cross-check against the way you scored the individual pathways. For example, if scored the ground water pathway on the basis of no suspected release and secondary targets only, yet your response to question #1 is yes,"this presents apparently conflicting conclusions that you need to reconsider and resolve. Your answers to the questions on page 24 should be consistent with your evaluations elsewhere in the PA scoresheets package.

SITE SCORE CALCULATION

	S	S ²
GROUND WATER PATHWAY SCORE (Sow):	2.52	6.35
SURFACE WATER PATHWAY SCORE (S,,,):	61.2	3745,4
SOIL EXPOSURE PATHWAY SCORE (S _s):	1.6	2.56
AIR PATHWAY SCORE (S.):	4.7	22.09
SITE SCORE:	$\frac{S_{gw^2} + S_{gw^2} + S_{g^2} + S_{a^2}}{4}$	30.7

SUMMARY

	YES	NO
		y≰
A. If yes, identify the well(s).		
B. If yes, how many people are served by the threatened well(s)?		
Is there a high possibility of a threat to any of the following by hazardous substance migration in surface water?		
A. Drinking water intake B. Fishery C. Sensitive environment (wetland, critical habitat, others) D. If yes, identify the target(s). WETLAND	X	XX C
is there a high possibility of an area of surficial contamination within 200 feet of any residence, school, or daycare facility?	0	Þ.
If yes, identify the property(les) and estimate the associated population(s).		
Are there public health concerns at this site that are not addressed by PA scoring considerations? If yes, explain:	٥	0
	B. If yes, how many people are served by the threatened well(s)? Is there a high possibility of a threat to any of the following by hazardous substance migration in surface water? A. Drinking water intake B. Fishery C. Sensitive environment (wetland, critical habitat, others) D. If yes, identify the target(s). WETLAND Is there a high possibility of an area of surficial contamination within 200 feet of any residence, school, or daycare facility? If yes, identify the property(les) and estimate the associated population(s). Are there public health concerns at this site that are not addressed by PA scoring	la there a high possibility of a threat to any nearby drinking water well(s) by migration of a hezardous substance in ground water? A. If yes, identify the well(s). B. If yes, how many people are served by the threatened well(s)? Is there a high possibility of a threat to any of the following by hazardous substance migration in surface water? A. Drinking water intake B. Fishery C. Sensitive environment (wetland, critical habitat, others) D. If yes, identify the target(s). WETLAND Is there a high possibility of an area of surficial contamination within 200 feet of any residence, achool, or daycare facility? If yes, identify the property(les) and estimate the associated population(s). Are there public health concerns at this site that are not addressed by PA scoring